Investment Casting
High-performance components
The ZOLLERN Group
ZOLLERN is one of the pioneers of the metal industry. 3,000 employees at 14 production locations and seven subsidiaries in Europe, North and South America and Asia develop, manufacture and supervise a range of innovative metal products. ZOLLERN supplies sophisticated solutions for diverse applications through its business units drive technology, plain bearing technology, casting and forging, mechanical engineering elements and steel profiles.

Contents

Demanding investment castings 3
Investment casting 4
Industries and Applications
Aviation 6
Automobile 8
Industrial Components, Medical Technology, Mechanical Engineering 10
Procedures 12
Processes 14
Quality 16
ZOLLERN-Feinguss produces sophisticated investment castings at its headquarters in Laucherthal, Germany and other locations in Soest (Germany), Slovenia, Romania and Portugal. The vertical range of manufacture extends from the master smelter to ready-to-install, highly sophisticated investment castings, including mechanical processing, surface finishing and assembly. ZOLLERN's experienced specialists cast almost any standardised alloy. Even non-standardised special alloys are created according to customer requirements or modified using existing alloys.

The investment casting process is suitable for developing components using rapid prototyping and offers economical solutions in small, medium and large series.

ZOLLERN combines different technologies, such as open casting, vacuum induction, low-pressure casting and SOPHIA©-casting under one roof. ZOLLERN offers the best technical and economical solution for various application-specific requirements.
Investment casting
A precision process with tremendous design freedom

Investment casting is casting in one-piece ceramic shell moulds. This eliminates the mould and model divisions that are common in sand casting as well as the inaccuracies and burrs that this causes.

In investment casting, the model is melted out and is thus lost. The process is described by the following manufacturing steps.

1. A wax model is required for each casting. The models are produced by injection moulding in tools made of soft metal alloys, aluminium or steel.

2. The models are glued together to form a “casting cluster”. This means that the casting system is created. Several models or only one model can be glued to form the “casting cluster”.

3. By dipping the “casting cluster” into a ceramic slurry several times with subsequent sanding, models (after drying and possibly chemical hardening) receive a 6 to 10 mm thick refractory ceramic shell.

4. After the mould material dries and sets, the wax models are melted out and the moulds are fired at temperatures up to 1,100°C.

5. The casting is made by pouring into hot moulds. By filling even fine details of the mould, a dense casting is created.

6. After cooling down and knocking out, the poured castings are separated from the moulds, processed and tested.

7. Quality inspection
Investment casting is a very economical exact or precision casting process. On the one hand, ever larger castings are being precision cast, while on the other hand (super) alloys that are increasingly difficult to melt are being precision cast. Due to its economic advantages, investment casting is increasingly being considered in value-analytical comparisons. Investment casting enables optimum design like no other casting process.

Technical solutions are often achieved by means of precision casting design, which are otherwise not possible at all or at least not so inexpensively.

Selection of materials
A tremendous variety of materials is available, such as case-hardening steels, creep-resistant, heat-resistant and high-temperature alloys, wear-, corrosion- and soft magnetic materials. ZOLLERN can cover almost all application areas. Detailed information can be found in ZOLLERN’s alloy catalogue.

Surface finish
The castings cast without burrs have an excellent surface and in many cases do not require further machining, except for the production of the fitting dimensions.

Unit weights
Depending on the manufacturing process, unit weights of up to 100 kg are produced.

Advantages
- Virtually unlimited design freedom
- Large selection of alloys
- Precision casting process with high dimensional accuracy
- Near contour casting (near net shape)
- Representation of difficult inner contours by means of ceramic cores
- High surface quality
In many areas of aviation, investment castings from ZOLLERN ensure reliable technical functions.

Applications
- **Turbine:**
 - Guide and rotor blades, heat shields
- **Structure and flight control:**
 - Landing flap profiles and receptacles, drive housing, electronic housing, fuel and hydraulic housing
- **Equipment:**
 - Fittings, locking bolts, brackets, hinges, handles, pump housing
- **Aerospace:**
 - Housing for optical, electronic and fuel systems

Materials, weight spectrum
- **Steel,** max. 20 kg
- **Aluminium,** up to 1,400 mm x 900 mm x 600 mm, max. 120 kg
- **Super alloys conventional solidification,** max. 25 kg
- **Super alloys directional (DS) and monocrystalline solidification (SX),** max. 4 kg

ZOLLERN Technologies
- Open casting
- Low pressure die casting
- VIM - Vacuum casting

Special processes
- **SOPHIA®** process for high-strength, thin-walled aluminium components
- Laboratory equipment for Single Crystal (SX), Directional Solidification (DS) and Equiax (CC) casting

Stress and casting simulation ensure optimised process engineering and maximum economic efficiency

Courtesy of UTC Aerospace Systems, designed by UTAS-Propeller Systems - RATIER - FIGEAC®
Investment cast components convince in the automotive industry with their enormous performance capability. For example, the small, powerful turbine wheels made of Inconel perform over 300,000 revolutions per minute while withstanding temperatures of 1000°C and more.

Applications
- Turbocharger components: turbine wheels, valve discs, vanes or wheel carriers, electronic boxes, levers, brackets and planet carriers

Materials, weight spectrum
- Steel alloys
- Vacuum alloys or superalloys, including MAR and INCONEL

Components from a few grammes up to 60 kg are possible.

ZOLLERN Technologies
- Open casting
- Penny/VIM vacuum casting

With a diameter from 20 to 120 mm, the ZOLLERN turbine wheel performs at temperatures of more than 1,000°C at more than 300,000 rpm. For full power and an agile driving feeling at the highest level.
Investment Casting
Industrial components
medical technology
mechanical engineering

In high-performance mechanical engineering, investment castings can withstand particularly high dynamic loads. The diversity of materials and freedom of design in investment casting is also appreciated in medical technology, where knee implants are made from cobalt-based alloys, for example. The heat resistance of the materials used also plays an important role as turbine blades in gas turbines.

Applications
- Energy:
 Industrial gas turbine, pump housing, electronics housing, guide blades,
- Medical technology:
 Implants, Instruments
- Mechanical engineering:
 Housing, brackets, valves, fittings, screw conveyors, chain links, fan wheels
- Measuring technology

Materials, weight spectrum
- More than 500 materials, also according to customer specification
- Openly potted alloys
 up to 180 kg melting weight
- Vacuum alloys
 up to 90 kg melting weight and a component size
 up to (HxØ) 750 mm x 600 mm

ZOLLERN Technologies
- Open casting
- Low pressure die casting
- Vacuum casting

The highest quality implants are manufactured by investment casting from superalloys. Femoral and tibial elements for knee joints in particular are an area with a future for ZOLLERN, also in the USA and China.
The appropriate procedure for every requirement

Vacuum investment casting

There are two different technologies for vacuum investment casting. On the one hand the Penny technology and on the other hand the vacuum induction process using a VIM system (Vacuum Induction Melting). Due to their chemical composition, in particular the content of oxygen affine elements, high-temperature resistant materials must be melted and cast in a vacuum.

The vacuum casting process also offers the advantage of a very good degree of purity and, due to the special process technology, offers the possibility of targeted grain refinement on the castings. The workflow at the melting stations is automated except for loading and unloading. Only vacuum remelt alloys are used as starting materials for superalloys.

Penny technology

A vacuum induction furnace is used as a tandem system for melting and casting under vacuum. This system is designed for the serial production of smaller investment castings. It is adapted to the use of preheated ceramic shell moulds produced by the lost wax process. Melting takes place in an oxide ceramic disposable crucible. Casting takes place automatically through bottom casting after melting through a thin metal plate which closes the casting opening in the crucible bottom during melting. The metal plate is of the same type as the cast alloy. The crucible is either made of oxide ceramic fibre material or is an integral part of the casting mould. The system operates in the vacuum range up to 10-2 mbar. Components with a diameter of approximately 250 mm and a maximum height of 300 mm can be manufactured in this way.

VIM technology

The molten mass weight of the VIM system is approximately 100 kg. The system is designed for a melting bath temperature of up to 1,700 °C. The vacuum range is ≤ 5x10-4 mbar. Components with a diameter of 600 mm and a height of 600 mm can be manufactured.

In a partially double-walled and water-cooled melting chamber, the alloy is melted in a ceramic crucible via an induction field. The crucible is tilted via a computer-controlled, servomotor-supported tilting curve for optimum mould shell filling.
Aluminium investment casting SOPHIA® process

• With the computer-controlled, directional solidification in the SOPHIA® process, high-strength mechanical material properties are achieved that go far beyond the standard values. The SOPHIA® process is particularly suitable for the lightweight design.
• Prototypes and series can be developed and manufactured within a very short time using the SOPHIA® PROCESS. The virtually unlimited freedom of design for bionic and topologically-optimised components in series quality is another advantage of the special process.

Open investment casting conventional

Conventional open investment casting is characterised by an almost unlimited selection of different alloys.

In this procedure, the casting cluster is poured off manually in an oxygenated environment.

The mould filling is controlled manually via the pouring speed.

A component weight of up to 100 kg is feasible.

Open investment casting roll-over technology

Before the casting process, the ceramic shell is mounted upside down on the melting furnace.
After melting the alloy, the furnace rotates 180 degrees in a few seconds. The mould is filled accordingly quickly.

The casting process takes place under an inert gas bell in order to eliminate the influence of oxygen.

Low pressure investment casting process

The main difference between the low-pressure investment casting process and conventional casting and the SOPHIA® PROCESS is that the mould filling can be controlled and the molten mass can be cast against gravity at low pressure.
Processes
Shaping the world

Wax injection
When producing the wax model, wax is pressed into a tool that depicts the shape of the subsequent casting as a negative. After curing, the wax model is removed. The tool is designed as a manual aluminium or steel automatic tool, depending on the planned series quantity. Very complex internal geometries, which cannot be reproduced by the tool, can be realised by a water-soluble wax core. This is dissolved again in a water bath after the wax model has been injected.

Cluster assembly
Individual components are adhered to a casting system and form a model cluster. Depending on the size of the wax models or the subsequent components, a model cluster consists of a few up to hundreds of wax models. The model cluster is then immersed in a cleaning medium to prepare the surface for the ceramic process.

Ceramic
To produce the subsequent casting mould, the wax cluster is coated with a stable and diffusion-open ceramic. This is usually done automatically by robots. Several layers are built up by alternately dipping into a ceramic slurry, then sanding and drying. This process takes several days.

Melting off
In an autoclave, the wax in the ceramic is melted out by means of steam and increased pressure. Hence the name «lost wax process». The wax model is lost and the ceramic shell takes over the shaping of the product. Melted wax can be recycled and reused for the sprue system.

Firing
The subsequent firing gives the ceramic mould the necessary stability to withstand the casting pressure and thermal influences during casting.
Casting/Finishing

The casting clusters are brought up to temperature in the furnace, removed manually or by a robot and fed to the casting system. For open-cast steel alloys, the casting process only takes a few seconds or minutes. For alloys that require a vacuum to be melted, the cycle time may exceed 30 minutes.

Finished part machining

The investment casting process enables the component to be manufactured in near net shape so that machining is only required in areas that require special tolerances.

Quality assurance

Quality assurance takes place during the individual processes as well as at the end of the process chain. The quality tests are determined depending on the requirements of the component, the industry or the customer. A separate accredited laboratory is available for metallurgical investigations.

Rework

The ceramic is removed from the casting cluster. Various technologies are available for this purpose, such as sandblasting or vibration systems. The casting system is separated from the component and then the remaining sprues on the component are brought into the final contour through grinding.
Certified processes. First class quality.

ZOLLERN products are marked by high quality. In addition to the strict quality assurance of the individual products, the ZOLLERN management system is certified according to the international standards ISO 9001 and ISO TS 16949. Environmental and energy management in accordance with ISO 14001 and ISO 50001 is also a certified standard that is applied on a daily basis.

- At ZOLLERN, error prevention takes priority over error correction. The goal is zero defects in the sense of complete fulfilment of customer requirements.
- The work at ZOLLERN is accompanied by continuous improvement of the processes, the organisational structure and ultimately the products and services. In addition to continuous further development in the relevant areas, the company suggestion scheme also makes an important contribution to this.
- Employee orientation, training and further education and optimum working conditions are important components of the corporate policy at ZOLLERN – so that top performances are achieved in national and worldwide markets today and tomorrow and so that resources and the environment are conserved at the same time.

Quality assurance and material testing

ZOLLERN uses a variety of methods and instruments to ensure product quality. Material tests are certified according to DIN EN 10204 and accompany the entire manufacturing process.

Testing of mechanical and technological properties
- Tensile testing machines
- Hardness testing devices for all standards
- Fully automatic small load hardness tester
- Notched bar impact test

Metallographic testing
- Laboratory for sample preparation, such as hot embedding and preparation of microsections
- Various macrosopes and microscopes enable precise material examination

Determination of the chemical composition
- Spectral analysis
- Chemical analysis

Geometry and surface roughness testing
- Measuring machines, optical, tactile and digital
- Roughness testing devices

Straightness and torsion testing
- Measuring tables, measuring bridges in various lengths and protractors

Further development of heat treatment, determination of tempering temperatures
- Laboratory furnaces

Non-destructive testing methods
- Crack testing according to the eddy current principle and magnetic particle principle
- Ultrasonic tests
- Tests for confusion
4 continents, 21 locations, 3,000 people.
Group headquarters
ZOLLERN GmbH & Co. KG
Hitzkofler Str. 1
72517 Singenahringendorf-Lauchertal
Germany
T +49 7571 70-0
F +49 7571 70-602
info@zollern.com

Subsidiaries
France
ZOLLERN S.A.R.L.
64, rue Gutenberg
57200 Sarreguemines
fr@zollern.com

Italy and Southern Europe
ZOLLERN Italiana S.r.L.
Via Carlo Nè, 46
21013 Gallarate (VA)
it@zollern.com

Netherlands and Northern Europe
ZOLLERN Nederland B.V.
Kerkstraat 37, 5253 AN Nieuwvijk
nl@zollern.com

Russia
000 ZOLLERN Antriebstechnik
Derbenevskaya nab., 7 bl. 2,
office 432
115114 Moscow
russia@zollern.com

United Kingdom
ZOLLERN UK Ltd.
1 The Stables
46 Castle Hill
Kilnworth CV8 1NB, England
uk@zollern.com

USA
ZOLLERN North America L.P.
40485 West 155 Service Road
Ponchatoula, LA 70454
usa@zollern.com

India and South-East Asia
ZOLLERN India Private Ltd.
4th Floor Statesman House Building
Barakhamba Road Connaught Place
New Delhi 110001
ind@zollern.com

China
ZOLLERN (Tianjin) Machinery Co. Ltd
No. 79, 11th Avenue Teda
300457 Tianjin Pr. of China
zac@zollern.com

Germany
Friedrich Blickle & Co. GmbH
Precision grinding
Flenderstraße 86, 72474 Winterlingen
fbg@zollern.com

Germany
ZOLLERN Rückle GmbH & Co. KG
zra@zollern.com

Germany
ZOLLERN BHW Gleitlagertechnologie
GmbH & Co. KG
Rolandsweg 16–20
37520 Osterode am Harz
bhw@zollern.com

Germany
ZOLLERN Getriebetechnik Dorsten GmbH
Hüttenstraße 1, 46284 Dorsten
zda@zollern.com

Germany
ZOLLERN Maschinenbauelemente
GmbH & Co. KG
Sandweg 60, 88326 Aulendorf
zmb@zollern.com

Portugal
ZOLLERN & COMANDITA
Rua Jorge Ferrerinha 1059
4470-314 Maia-Vermoim
zcp@zollern.com

Romania
S.C. ZOLLERN S.R.L.
Ferma 20 FN, 317235 Pecica-Arad
zro@zollern.com

Slovenia
ZOLLERN Ravne d.o.o.
Koroška cesta 14
2390 Ravne na Koroškem, Slovenia
Sodnji register Ok.Sod. v Slovenj Gradcu,
št.:1/09521/00
zrs@zollern.com

4 continents,
21 locations,
3,000 people.
Drive technology

- Travel gears from 100,000 Nm to 2m Nm
- Slewing gears from 3,000 Nm to 1.6m Nm
- Planetary plug-in gears from 4,000 Nm to 2.5m Nm
- Rope winches with planetary plug-in gears for lifting/tensile forces from 2 t to 280 t
- Industrial gears from 3,000 Nm to 1.6m Nm
- Free-fall winches for free-fall weights from 2 t to 50 t
- Special gears from 5,000 Nm to 6.0m Nm (spur gears, bevel-helical gears, helical-worm gears)
- Planetary plug-in gears from 4,000 Nm to 2.5m Nm
- Industrial gears from 3,000 Nm to 1.6m Nm
- Planetary gears from 3,000 Nm to 1.6m Nm
- Planetary gears from 3,000 Nm to 1.6m Nm
- Special gears from 5,000 Nm to 6.0m Nm (spur gears, bevel-helical gears, helical-worm gears)

Automation

- Linear axes (payload: up to 10,000 kg)
- Telescopic axes (payload: up to 1,600 kg)
- Gantry robots (line and gantry portals) (nominal stroke: up to 50 m)
- Plant and system solutions (turnkey)

Plain bearings

- Metallic plain bearings for 4-stroke engines, 2-stroke engines, piston compressors and pumps
- Plain bearing shells up to 1,200 mm in diameter for steel/lead bronze and steel/aluminium applications and up to 1,600 mm for steel/white metal applications
- Bushings with diameters of up to 800 mm for steel/lead bronze and up to 1,600 mm for steel/white metal applications
- Use of solid materials, 2-layer materials and multi-layer composites with metallic or synthetic sliding layers
- Radial, axial and combined radial/axial bearings in fixed-surface and tilting pad designs for shaft diameters up to 800 mm
- Z-type housing plain bearings according to DIN 31690/31693 and 31694 for shaft diameters up to 1,250 mm
- Vertical plain bearings for shaft diameters up to 625 mm
- Industrial plain bearings to specifications for shaft diameters up to 3,000 mm
- Hydro bearings
- Valve plates, control cams, control plates, blank holder segments

Hydro bearings

- Valve plates, control cams, control plates, blank holder segments
Investment casting
- Complex components according to lost wax technique (investment casting)
- Open-cast steel alloys
 up to 180 kg casting weight, max. 760 x 500 mm
- Vacuum-cast superalloys
 up to 90 kg casting weight, max. 600 x 600 mm
- Low-pressure cast aluminium
 up to 190 kg casting weight, max. 800 x 600 mm
- Solidification characteristics: EQX; DS; SX
- Pre-finished components

Casting and Forging
- Forgings from high-purity copper and copper alloys
 up to 3 t each
- Rings for electric motors, roller bearings and guide bushings
- Complex one-off parts and short runs
- Sandcast part weights up to 2 t in steel and 8 t in copper alloys
- Patternless forming using direct machining and printed cores
- Impellers and blades for the hydropower sector
- Housings and parts for marine propulsion systems

Steel profiles
- Profile types: hot-rolled, cold-rolled, cold-drawn, induction-hardened
- 200 materials with profile cross-sections from 5 mm² to 6,000 mm² (40 g/m to 48 kg/m)
- Surface roughness from Rz 5 µm
- Tolerances from 30 µm
- Near-net shape manufacturing
- Hardness values up to 64 HRC according to choice of material and technique
- Pre-finished components

Mechanical engineering elements
- Precision steel shafts, head shafts, columns, bars, straightening rollers, bolts and axes with diameters from 2 to 250 mm and maximum lengths of 8,000 mm
- Guide rails with max. cross-sections of 100 x 25 mm and lengths <= 8,000 mm
- Surfaces hardened, straightened, ground, hard chrome plated and polished
- Finishing including turning, milling, drilling or grinding to customer specifications
Investment casting
- Complex components according to lost wax technique (investment casting)
- Open-cast steel alloys up to 180 kg casting weight, max. 760 x 500 mm
- Vacuum-cast superalloys up to 90 kg casting weight, max. 600 x 600 mm
- Low-pressure cast aluminium up to 190 kg casting weight, max. 800 x 600 mm

Casting and Forging
- Forgings from high-purity copper and copper alloys up to 3 t each
- Rings for electric motors, roller bearings and guide bushings
- Complex one-off parts and short runs
- Sandcast part weights up to 2 t in steel and 8 t in copper alloys
- Patternless forming using direct machining and printed cores
- Impellers and blades for the hydropower sector
- Housings and parts for marine propulsion systems

Steel profiles
- Profile types: hot-rolled, cold-rolled, cold-drawn, induction-hardened
- 200 materials with profile cross-sections from 5 mm² to 6,000 mm² (40 g/m to 48 kg/m)
- Surface roughness from Rz 5 µm
- Tolerances from 30 µm
- Near-net shape manufacturing
- Hardness values up to 64 HRC according to choice of material and technique
- Pre-finished components

Mechanical engineering elements
- Precision steel shafts, head shafts, columns, bars, straightening rollers, bolts and axes with diameters from 2 to 250 mm and maximum lengths of 8,000 mm
- Guide rails with max. cross-sections of 100 x 25 mm and lengths <= 8,000 mm
- Surfaces hardened, straightened, ground, hard chrome plated and polished
- Finishing including turning, milling, drilling or grinding to customer specifications