

Kupfer-Zink-Gusslegierung ABG Leg. 2180

ABG ist ein Konstruktions- und Gleitwerkstoff mit sehr hoher statischer Belastbarkeit. Wegen der mäβigen Gleiteigenschaften sind nur geringe Gleitgeschwindigkeiten – aber hohe Flächenpressungen – zulässig. Ein harter Gleitpartner ist notwendig.

ZOLLERN Marke	ABG
EN-Bezeichnung	CuZn25Al5Mn4Fe3-C
EN Werkstoff-Nr.:	CC762S

EN 1982, ASTMB B584, BS1400, SA430B

// ISO / nationale Bezeichnungen			
DIN	G-CuZn25Al5		
DIN	2.0598		
USA	C86300		
GB	HTB3		
F	≈ U – Z19A6		

≈ (weitgehende Übereinstimmung)

// Zusammensetzung	(Massenanteil in %)	EN 1982

Си	Al*	Fe*	Ni*	Mn
60,0 – 67,0	3,0 – 7,0	1,5 – 4,0	max. 3,0	2,5 – 5,0
Pb	Si	Sn	Zn*	P

* ASTM B584 Al 5,0 – 7,5 % Fe 2,0 – 4,0 % Ni max 1% Zn 22 – 28 % * BS 1400 HTB3 Al 3,0 – 6,0 % Fe 1,5 – 3,2 % Ni max 1 %

// Festigkeitseigenschaften bei Raumtemperatur					
	(Mindestwerte)				
[1] EN 1982 [2] ASTM B584, R _{p0.5} * [3] BS 1400	R _m N/mm²	R _{p0,2} N/mm²	A ₅ %	НВ	
[1] Sandguss	750	450	8	180	
[1] Maskenformguss	750	450	8	180	
[1] Schleuderguss	750	480	5	190	
[2] Sandguss	758	414*	12	-	
[3] Sandguss	740	400	11	-	
[3] Schleuderguss	740	400	13	-	

// Festigkeitseigenschaften bei erhöhten Temperaturen (Anhaltswerte)						
Temperatur	°C	20	150	200	250	300
Zugfestigkeit	R _m N/mm²	750	660	626	608	590
0,2 % Grenze	R _{p0,2} N/mm ²	450	438	433	428	422

8

 A_5 %

Dehnung

16

18

23

// Physikalische Eigenschaften (Anha	altswerte)
Dichte bei 20 °C	8,2 kg/dm³
Schmelztemperatur/-bereich	900 – 925 °C
Wärmeleitfähigkeit bei 20°C	0,50 W/cm °C
Elektrische Leitfähigkeit bei 20°C	5 – 8 MS/m 8 – 14 % IACS
Elektrischer Widerstand bei 20 °C	0,125 – 0,20 Ω mm²/m
Längenausdehnungskoeffizient von 20°C bis 200°C	18 x 10 ⁻⁶ °C ⁻¹
Schwindmaß	ca. 1,8 – 2,3 %
E – Modul	110 KN/mm²
Permeabilität	< 1,1

// Dynamische Festigkeitswerte bei Raumtemperatur (Anhaltswerte)	
Biegewechselfestigkeit R _{bw} bei 10 ⁸ Lastspielen	150 N/mm²
Kerbschlagarbeit (ISO – V/KV)	30 Joule

Solid metals. Fine solutions.

Kupfer-Zink-Gusslegierung ABG Leg. 2180

ABG ist ein Konstruktions- und Gleitwerkstoff mit sehr hoher statischer Belastbarkeit. Wegen der mäßigen Gleiteigenschaften sind nur geringe Gleitgeschwindigkeiten – aber hohe Flächenpressungen – zulässig. Ein harter Gleitpartner ist notwendig.

Anwendungsgebiete

ABG wird für statisch hoch belastete Konstruktions- und Gleitteile verwendet. Die sehr guten Festigkeitswerte lassen hohe Flächenpressungen zu. Der Werkstoff eignet sich nur für geringe Gleitgeschwindigkeiten. ABG wird verwendet für

- Lagerbuchsen in Baggerarmen
- Schaufelladern und anderen Baumaschinen
- Gleit- und Führungsleisten
- langsam laufende Schneckenradkränze

Bearbeitbarkeit

ABG ist spanend gut zu bearbeiten. Der Zerspanungsindex liegt bei ca. 30 (CuZn39Pb3 = 100). Mechanisches Polieren ist gut möglich, elektrochemisches weniger gut.

Entspannungsglühung ca. 350 – 480 °C

Weichlöten nicht geeignet

Hartlöten nicht geeignet

Schweißen Schutzgasschweißungen

> sind möglich. Es kommt jedoch zu einer Rauchentwicklung durch Ausdampfen von Zink (Rauch absaugen). Analysengleiche oder ähnliche Zusatzwerkstoffe stehen nicht zur Verfügung. Möglicher Zusatzwerkstoff z. B. S-CuAl8Ni2 oder CuSn8 = CF 453K

Galvanisierbarkeit mittelmäßig

ZOLLERN GmbH & Co. KG

Hitzkofer Straße 1 72517 Sigmaringendorf-

Laucherthal Deutschland T +49 7571 70-984 F +49 7571 70-82984 zgm@zollern.com www.zollern.com

