ZOLLERN

Solid metals. Fine solutions.

Casting

Cast Steel and Copper Casting Alloys

The ZOLLERN-Group
With first-class products and customized solutions in the sectors drive technology, investment calling, sand casting and forging as well as steel profiles we are one of the leading manufacturers – worldwide.

As one of the oldest family-run businesses in Germany we are proud to look back on an impressive 300-year history during which we have merged tradition with innovation. Our main focus is on excellent quality and service.

Welcome to the world of ZOLLERN, where experience and progress go hand in hand to offer our customers the best solutions and products for their requirements in various industrial sectors.

Contents	Page
Sand casting - Superior quality casting	3
Heat-resisting cast steel	4
Stainless and acid-resistant steels, ferritic/austenitic	4
Stainless and acid-resistant steels, ferritic/martensitic	5
Stainless and acid-resistant cast steel, austenitic	6
Heat-resistant cast steel	8
Special materials, non-magnetisable	8
Copper-tin-zinc casting alloys	g
Copper-zinc casting alloys	g
Copper-nickel casting alloys	11
Copper casting materials	11
Copper-aluminium casting alloys (standardised)	12
Copper-aluminium casting alloys (non-standardised)	13
ZOLLERN-Group Product areas	14

Sand castingSuperior quality casting

In Laucherthal, castings have been made from metallic materials since the founding of the company in 1708. Apart from iron and steel, a bronze foundry was added around 1890. Today the focus is on sand castings made of copper alloys and high alloy steels.

For manually or machine formed parts, resin-bonded sands are used. This ensures a good surface, narrow tolerances as well as high-quality material. We have a mold milling center at our disposal for the design of complex geometries without the need of a pattern. For special applications or requirements, the shell molding process or ceramic molds and ceramic cores are applied.

Copper alloy castings are possible up to a supplied weight of 8,000 kg, steel up to 2,500 kg. In addition to a milling center for the turning process at our premises, we work closely with a network of specialized processing partners for the pre- or finish-machining of the castings according to customers' drawings. In our own laboratory and material inspection department we can carry out every standard destructive and non-destructive tests and examinations.

For us, quality and delivery reliability are the prerequisites for success on the national and international market.

Heat-resisting cast steel

Designation	Material no.	Standard	Typical heat treatment	Mechar charact		technologica	al	Notched- bar impact	Thermal expansion between	Intended use/ particular application examples
			state	0.2% pro	oof stress	Tensile			20 and 300°C	
				20°C	590°C	strength Rm (MPa)	at failure A ₅ (%)	(1)	α (10-6 K-1)	
G X 20 CrCoMoV 12 21	1.4912	-	Quenched and tempered	-	≥ 340	780-980	≥ 10	-	-	Heat-resisting castings resistant to pressurized hydrogen for the chemical industry; Rp _{0.2} at least 340 MPa at 500°C
G X 22 CrMoV 12 1 G X 23 CrMoV 12-1	1.4931	EN 10213 EN 10293	QT	≥ 540	≥ 340	740-880	≥ 15	≥ 27	11.5	Turbine construction; com- ponents that are exposed to rapid temperature changes (temperature shock)
G X 15 CrNiCo 21 20 20	1.4957	WL 1.4957	Cast state	-	≥ 250	650-850	≥ 10	-	15.8	Aerospace; turbines/air blades, combustion chambers, val- ves; up to approx. 730°C; for further data, see supplement
G A 13 CHNICO 21 20 20	1.4971	ASTM A567	Or annealed							1 to 1.4957; non-scaling up to approx. 980°C; high-temperature; stainless
GS 16 CrMo 4	1.7242	-	Quenched and tempered	≥ 345	-	540-690	≥ 15	-	-	For castings up to max. 530°C application temperature can also be used as case-hardening steel
GS 17 CrMo 55 G 17 CrMo 5-5	1.7357	EN 10213 EN 10293	QT	≥ 315	≥ 180	490-690	≥ 20	≥ 27	13.4	Turbine construction, pressure vessels, steam boiler construc-
GS 17 CrMoV 5 11 G 17 CrMoV 5-10	1.7706	EN 10213	QT	≥ 440	≥ 300	590-780	≥ 15	≥ 27	13.4	tion

Stainless and acid-resistant steels, ferritic/austenitic

Designation	Material no.	Standard	Typical heat treatment	Mechanical and racteristics	technologica	al cha-	Notched- bar impact	Thermal expansion between	Intended use/ particular application examples
			state	0.2% Proof stress	Tensile strength	Percent elongation at failure		20 and 300°C	
				Rp _{0.2}	Rm (MPa)	A ₅ (%)	(J)	α (10-6 K-1)	
G X 4 CrNi 26-7	1.4347	EN 10283	Solution heat treated and quen- ched	≥ 420	≥ 590	≥ 20	≥ 30	14.5	Parts that require toughness with higher proof stress com- pared to austenitic steels with partially identical or better corrosion resistance, suitable filler material 1.4462, pump housing
G X 2 CrNiMoN 26-7-4	1.4469 J93404	EN 10213 EN 10283 ASTM A 995	Solution heat treated and quen- ched	≥ 480	≥ 650	≥ 22	≥ 50		For heavy exposure to corrosion, sea or brackish water, operating temperature up to 300°C
G X 2 CrNiMoN 22-5-3	1.4470 J92205	SEW 400 EN 10283 ASTM A 995	Solution heat treated and quen- ched	≥ 420	≥ 600	≥ 20	≥ 30	13	Chemical and petro-chemical industry, high resistance to stress-crack corrosion in media containing chlorine; similar to 1.4462
G X 2 CrNiMoCuN 25-6-3-3 G X 2 CrNiMoN 25-6-3	1.4517	EN 10283	Solution heat treated and quen- ched	≥ 480	≥ 650	≥ 22	≥ 50	14.9	Chemical and petro-chemical industry, flue gas desulfurization; resistant to non-oxidizing acids, e.g. sulphuric acid

Stainless and acid-resistant steels, ferritic/martensitic

Designation	Material no.	Standard	Typical heat treatment	Mechanical a characteristic		jical	Notched- bar impact	Annealing hardness	Intended use/ particular application examples
			state	0.2% Proof stress Rp _{0.2}	Tensile strength Rm (MPa)	Percent elongation at failure A ₅ (%)	work (ISO-V)	(HB)	
G X 8 CrNi 13	1.4008	DIN 17445	QT	≥ 440	≥ 570	≥ 15	≥ 27	170-240	Resistant to humidity, water, steam; pump parts, running
G X 7 CrNiMo 12-1		EN 10283							wheels, running wheel blades; suitable welding filler 1.4009
G X 20 Cr 14	1.4027	DIN 17445 SEW 410	Quenched and tempered	≥ 440	590-790	≥ 12	-	170-240	For parts that must be resistant to humidity, steam, water and frequent handling. Suitable wel- ding filler 1.4009
X 46 Cr 13	1.4034	DIN 17440	Quenched and tempered	-		-		(55 HRC)	Heat-treatable cast steel for cutting tools, measuring tools, wear parts
G X 22 CrNi 17	1.4059	DIN 17445 SEW 410	Quenched and tempered	≥ 590	780-980	≥ 4	-	230-300	Corrosion-resistant, heat-treata- ble cast steel, e.g. for tow bars
X 14 CrMoS 17	1.4104	DIN 17440 SEW 310	Quenched and tempered	≥ 550	750-950	-	-	225-275	As 1.4016. For castings that require elaborate, mechanical finishing. Welding not recommendable
G X 35 CrMo 17	- 1.4122	DIN 17442 SEW 400	Annealed or quenched and tempered	≥ 500	750-850	≥ 10		220-280	Parts for optical devices, medical instruments and measuring devices
	1.4313	DIN 17445	QT1	≥ 550	≥ 760	≥ 15	≥ 50	240-300	Water turbines and pump parts,
G X 5 CrNi 13 4 G X 4 CrNi 13-4	1.4317	EN 10283	QT2	≥ 830	≥ 900	≥ 12	≥ 35	280-350	suitable filler material 1.4351
			QT3	≥ 500	≥ 700	≥ 16	≥ 50		
		SEW 410	Quenched						For parts with increased corrosion resistance compared to
G X 5 CrNiMo 16 5 1	- 1.4405	EN 10283	and tempered	≥ 540	760-960	≥ 15	≥ 60	-	1.4313; suitable welding filler 1.4405
17/4 PH			1.4549.4	≥ 830	≥ 900	≥ 8		≥ 30 HRC	
0.015.465	1.4549	WL 1.4549	1.4549.5	≥ 900	≥ 1030	≥ 6		≥ 34 HRC	
0.04C 16Cr 4Ni 3Cu			1.4549.6	≥ 1100	≥ 1240	≥ 6		≥ 40 HRC	Precipitation-hardened, stainless cast steel of high strength; aeronautical material
G X 4 CrNiCuNb 16-4	1.4525	EN 10283	QT1	≥ 750	≥ 900	≥ 12	≥ 20		
G X 4 CHVICUIVD 10-4	1.4323	LIN 10203	QT2	≥ 1000	≥ 1100	≥ 5			

Stainless and acid-resistant cast steel, austenitic

Designation	Material no.	Standard	Typical heat treat-	Mechanica characteri	al and techn stics	ological	Notched- bar impact	Annealing hardness	Intended use/ particular application examples	
			ment state	0.2% Proof stress Rp _{0.2}	Tensile strength Rm (MPa)	Percent elongation at failure A ₅ (%)	(J) (ISO-V)	(НВ)		
		DIN 17440	Solution heat tre-						As 1.4308. For castings with extensive mechani-	
X 8 CrNiS 18 9	1.4305	EN 10088	ated and quenched	≥ 175	440-640	≥ 20	-	130-200	cal machining, primarily thread cutting; welding not recommendable	
G X 2 CrNiN 18 9		SEW 410							Fittings and parts for pumps, centrifuges, etc.;	
X 2 CrNi 19 11	1.4306	EN 10088	AT	≥ 205	≥ 440	≥ 30	≥ 80	130-200	suitable welding filler 1.4302, 1.4551, 1.4316; food processing industry, dairies, beverage indus-	
G X 2 CrNi 19-11		EN 10283							try; similar to 1.4309 and 304 L	
G X 6 CrNi 18 9		DIN 17445								
G X 5 CrNi 19 10	1.4308	EN 40202	AT	≥ 175	≥ 440	≥ 30	≥ 60	130-200	Frequently used »V2A« quality; similar forging quality to 1.4301 and 304; fittings, pumps, food processing industry, dairies	
X 5 CrNi 19-10		EN 10283							processing muostry, dames	
X 5 CrNiMo 17 12 2	1.4401	DIN 17440	Solution heat tre- ated and quenched	≥ 185	440-640	≥ 20	≥ 60	130-200	Castings with identical corrosion resistance and forging quality, but lower strength; as a casting material standardised under 1.4408; similar to 316 L	
G X 2 CrNiMoN 18 10		SEW 410	Solution						Castings for which resistance to intergranular	
X 2 CrNiMo 17 12 2	1.4404	EN 10088	heat tre- ated and quenched	≥ 205	440-640	≥ 30	≥ 80	130-200	corrosion is paramount. After welding, no renewed heat treatment required; suitable welding filler 1.4430, 1.4576; similar to 1.4409 and 316 L	
G X 2 CrNiMo 19 11 2	1.4409	EN 10283	Solution heat tre- ated and quenched	≥ 195	440-640	≥ 30	≥ 80	130-200	Similar to 316 L; castings with increased resistance to intergranular corrosion after welding without further processing	
G X 6 CrNiMo 18 10	1.4408	DIN 17445	AT	≥ 185	≥ 440	≥ 20	> 60	130-200	Castings for the pulp, textile and chemical industry; fittings, pumps; suitable welding filler	
G X 5 CrNiMo 19-11-2	1.4400	EN 10283	AI	2 103	≥ 440	≥ 20	≥ 00	130-200	1.4403	
X 2 CrNiMoN17 13 5	1///6	DIN 17445	AT	> 210	> / 00	> 20	> 50	120 200	Good intergranular corrosion resistance, resistant	
GX 2 CrNiMoN 17-13-4	1.4446	EN 10283	AT	≥ 210	≥ 490	≥ 20	2 50	130-200	in high chlorine concentrations and tempera- tures, good pitting resistance, chemical industry	
X 2 CrNiMo 18 14 3	1.4435 S31603 CF3M	DIN 17440 MR 0175 ASTM A 743	Solution heat tre- ated and quenched	≥ 200	500-700	≥ 30	≥ 50	≤ 215	Material in accordance with NACE MR 0175. Similar to 1.4439, 316 L	
X 1 NiCrMoCuN 25 20 5	1.4539	CEIN (00	Solution heat tre-	-220	-	(≥ 35)	(80)		Good resistance to pitting and stress-crack corro-	
G X 1NiCrMoCuN 25 20 5	1.4538	SEW 400	ated and quenched	≥ 185	≥ 450	≥ 30	≥ 60	-	sion; full austenite; especially suitable for use sea water; similar to 1.4584/1.4529	
G X 5 CrNiNb 18 9	1/553	DIN 17445		. 475	- 1/0	- 20	. 25	120.200	Castings in the food processing, film, photo,	
G X 5 CrNiNb 19-11	1.4552	EN 10283	AT	≥ 175	≥ 440	≥ 20	2 35	130-200	paint, soap, paper, textile and saltpetre indus- tries; suitable welding filler 1.4551	
G X 5 CrNiMoNb 18 10	1 / 504	DIN 17445	A.T.	× 10F	>//0	. 20		120 200	Ac 1 /EE2: cuitable walding filler 1 /E26	
G X 5 CrNiMoNb 19-11-2	1.4581	EN 10283	AT	≥ 185	≥ 440	≥ 20	≥ 35	130-200	As 1.4552; suitable welding filler 1.4576	

Heat-resistant cast steel

Designation	Material no.	Standard	Typical heat treatment	Mechanical characterist	and technolo ics	gical	Notched- bar impact	Annealing hardness	Intended use/ particular application examples
			state	0.2% Proof stress Rp _{0.2}	Tensile strength Rm (MPa)	Percent elongation at failure A ₅ (%)	work (ISO-V)	(НВ)	
G X 40 CrSi 13	1.4729	DIN 17465 EN 10295	annealed	-	490-750	≥ 4	-	200-300	For parts subject to minimal stress in industrial furnace construction up to 850°C
G X 25 CrNiSi 18 9	1.4825	DIN 17465 EN 10295	Cast state or annealed	≥ 230	≥ 450	≥ 15	_	130-200	For parts subject to minimal stress in industrial furnace construction up to 900°C
G X 15 CrNiSi 25 20	1.4840	SEW 595	Cast state or annealed	205	440-640	15	-	≤ 230	For parts in furnace and apparatus construction up to 1,100°C in oxidizing atmospheres
G X 40 CrNiSi 25 20	1.4848	SEW 595 EN 10295	Cast state or annealed	≥ 220	≥ 450	≥ 8		150-220	
G X 40 NiCrSi 38 18	1.4865	DIN 17465 EN 10295	Cast state or annealed	≥ 220	≥ 420	≥ 8	-	150-220	For parts in industrial furnace construction with high temperature fluctuation resistance

Special materials, non-magnetisable

Material no.	Standard	Typical heat treatment			ogical	Notched- bar impact	Annealing hardness	Intended use/ particular application examples
		state	0.2% Proof stress Rp _{0.2}	Tensile strength Rm (MPa)	Percent elongation at failure A ₅ (%)	work (ISO-V)	(НВ)	
1.3952	SEW 395 WL 1.3952	Solution heat treated and quen-	≥ 240	490-690	≥ 30	≥ 80	130-200	Non-magnetic casting material (VG 81236); resistant to intergra- nular corrosion; can be welded
1.3955	SEW 395 WL 1.3955	Solution heat treated and quen- ched	≥ 195	440-590	≥ 20	≥ 80	150-190	Non-magnetic casting material (VG 81236), can be welded
1.3964	SEW 395 WL 1.3964	Solution heat treated and quen- ched	≥ 315	570-800	≥ 20	≥ 65	130-200	Non-magnetic casting material (VG 81236); very good corrosion resistance; particularly resistant to intergranular corrosion; can be welded, subsequent heat treat-
	1.3952 1.3955	SEW 395 WL 1.3952 SEW 395 WL 1.3955 WL 1.3955 SEW 395	no. SEW 395 Solution heat treated and quenched	no. heat treatment state Characterist treatment state 0.2% Proof stress Rpo.2 1.3952 SEW 395 WL 1.3952 Solution heat treated and quenched SEW 395 WL 1.3955 Solution heat treated and quenched SEW 395 Solution heat treated and quenched s	no. heat treatment state characteristics 0.2% Proof stress Rp _{0.2} Tensile strength Rm (MPa) 1.3952 SEW 395 WL 1.3952 Solution heat treated and quenched 1.3955 SEW 395 WL 1.3955 Solution heat treated and quenched SEW 395 Solution heat treated and quenched ≥ 195 A40-590 1.3964 SEW 395 Solution heat treated and quenched ≥ 315 S70-800	no. heat treatment state heat treatment stress heat treatment stress heat treatment strength heat treatment streatment strength heat treatment streatment streatment streatment state heat treatment streatment streatment state heat treatment streatment	no. heat treatment state no.2% Proof stress no.2% Proof stress no.2% Proof stress no.2% Proof stress no.2% Proof strength no.2% Proof strength	heat treatment state New Year Characteristics Characteristics Dar impact work (ISO-V)

Copper-tin-zinc casting alloys

Zollern designation					m values ie tensile en		Min. hardness	Intended use/ particular application examples
				R _{p0.2} N/mm²	Rm N/mm²	A ₅ %	НВ 10/1000	
R	G 5	EN 1982 CC491K CuSn5Zn5Pb5-C DIN 1705 2.1096 G-CuSn5ZnPb5 USA ~ C83600 UK LG2 F U-E5Pb5Z5	GS GZ	90 110	200 250	13 13	60 65	Thin-walled castings, water and steam fittings up to 225°C
R	G 6	EN 1982 CC492K CuSn7Zn2Pb3-C DIN 1705 2.1093 G-CuZn6ZnNi UK ~ LG 4	GS GZ	130 130		14 12	65 70	Suitable for pressure-tight parts due to additional Ni content fittings and pump housing up to 225°C
R	G 7	EN 1982 CC493K CuSn7Zn4Pb7-C DIN 1705 2:1090 USA ~ C93200 F U-E7Z5Pb4	GS GZ	120 120		15 12	60 70	Through higher Pb content good emergency running properties, sliding strips, sliding plates slide bearing shells or bushings up to 4kN/cm² maximum load, unhardened steel as shaft is an option

mechanical properties pursuant to EN 1982

GS = sand casting (values also for shell-mould casting) GZ = centrifugal casting

- Young's modulus ~ 90 105 kN/mm2
- Electric conductivity ~ 5-8 MS/m
- Density ~8.6-8.7 kg/dm3
- Thermal conductivity ~ 0.54-0.59 W/cm.K
- Thermal expansion coefficient ~ 17-18 . 10-6/K
- Permeability < 1.01 μr

All alloys are resistant against drinking water, sea water, oils, soap solutions, milk

Copper-zinc casting alloys

Zollern designation				m value: e tensile en	_	Min. hardness	Intended use/ particular application examples
			R _{p0.2} N/mm²	Rm N/mm²	A ₅ %	HB 10/1000	
BZ		GS GZ	200	450	10	~ 150	Preferred for sliding-stressed parts, up to 10 m/s sliding velocity, average compressive loads per unit area spindle and pressure nuts, bearing and guide bushings, bearing rings, worm wheel rims cast or pro- duced from centrifugal casting
	OR	GS GZ	170 200	450 500	20 18	110 120	
ZB		GS GZ	250 260	600 620	15 14	140 150	, <u>-</u> , <u>-</u>
ZB	1) N 1 / N 1	GS GZ	230	400 500	10 8	100 130	Very good casting capability, good sea water resistance, low permeability < 1.01, suitable for pressure-tight, thin-walled parts such as sea water pump housings and fittings, water tanks, heat exchanger parts, also parts for mechanical engi- neering, the electronics industry and precision engineering
Af	1150 = (86300)	GS GZ	450 480	750 750	8 5	180 190	Bearing material with high stress capability, only for low sliding velocities, moderate sliding proper- ties, bearing bushings in construction machines, such as excavator arms, slow-running worm wheel rims, slide and guide rails

mechanical properties pursuant to EN 1982

GS = sand casting (values also for shell-mould casting) GZ = centrifugal casting

- Young's modulus ~ 90 110 kN/mm²
- Electric conductivity ~ 3-8 MS/m
- Density ~8.1-8.3 kg/dm³
- Thermal conductivity ~ 0.42 W/cm.K
- Thermal expansion coefficient $\sim 18-19 \cdot 10^{-6}/K$
- Permeability < 1.03 μ_r

Copper-nickel casting alloys

ollern esignation				n values e tensile n		Min. hardness	Intended use/ particular application examples
			R _{p0.2} N/mm²	Rm N/mm²	A ₅ %	HB 10/1000	
GN 10	EN 1982 CC380H CuNi10Fe1Mn1-C DIN 17658 2.0815 G-CuNi10 USA C96200 F U-N10Fe1M	GS GZ	120 100	280 280	20 25	70 70	Very good resistance against sea water, bra- ckish water, chloride-containing wastewater, brine solutions for power plants, refineries,
GN 30	EN 1982 CC383H CUNi30Fe1Mn1NbSi-C DIN 17658 2.0835 G-CuNi30 USA C96400 F U-N30M1Fe	GS	230	440	18	115	desalination plants, chemical industry, drilling platforms, petroleum production fittings, valve parts, oil and water cooling tanks

mechanical properties pursuant to EN 1982

GS = sand casting (values also for shell-mould casting) GZ = centrifugal casting

- Young's modulus ~ 120 145 kN/mm²
- Electric conductivity ~ 2-6 MS/m
- Density ~ 8.9 kg/dm³
- Thermal conductivity ~ 0.30-0.60 W/cm.K
- Thermal expansion coefficient $\sim 15-16 \cdot 10^{-6}/K$
- Permeability < 2 μ_r

Copper casting materials

Zollern designation	Standards	Minimur from the specime	e tensile		Min. hardness	Intended use/ particular application examples	
			R _{p0.2} N/mm²	Rm N/mm²	A ₅	HB 10/1000	
ССС	EN 1982 CC140C CUCr1-C DIN 17665 2.1292 G-CuCr F35 USA ~ C81500 UK CC!-WP F U-Cr0.8Zr	GS	200	300	10	95	Electric conductivity ≥ 45 MS/m thermal conductivity ~ 3.14 W/cm.K As WKG, but higher wear resistance also for welding guns, electrode holders, clam- ping jaws for resistance welding equipment

mechanical properties pursuant to EN 1982

GS = sand casting (values also for shell-mould casting)

- Young's modulus ~ 100 kN/mm²
- Density ~ 8.9 kg/dm³
- Thermal expansion coefficient $\sim 17 \cdot 10^{-6}/K$
- Permeability < 1.01 μ_r

Copper-aluminium casting alloys (standardised)

Zollern designation	Standards			ım values ne tensile en		Min. hardness	Intended use/ particular application examples
			R _{p0.2} N/mm²	Rm N/mm²	A ₅	HB 10/1000	
AB 9	EN 1982 CC330G CUAl9-C	GS GZ	120 160	340 450	15 15	80 100	Low permeability < 1.01 also resistant against diluted sulphuric acid, castings for the chemical and food industry, such as screw conveyors, feed-in trays, mixing arms, pickling racks and hooks
тивс	EN 1982 CC331G CuAl10Fe2-C DIN 1714 2.0940 G-CuAl10Fe USA ~ C95200 UK AB1 F ~ U-A10Fe	GS GZ	180 200	500 550	18 18	100 130	Low temperature dependency of the properties between -200 und +200°C, good corrosion resist. paddle wheels, pump wheels, fittings, bevel wheel sea water applications if Al < 8.2+0.5Ni (%)
EBG S	EN 1982 CC332G CuAl10Ni3Fe2-C DIN 1714 2.0970 G-CuAl9Ni	GS GZ	180 220	500 550	18 20	100 120	no risk of stress-crack corrosion, as bearing material for parts subject to high stress and slower sliding velocities < 1 m/s
EBC	EN 1982 CC333G CuAl10Fe5Ni5-C DIN 1714 2.0975 G-CuAl10Ni USA ~ C95500, ~ C95800 UK ~ AB2 F U-A10N	GS GZ	250 280	600 650	13 13	140 150	on resistance, but also less elongation
VBC	EN 1982 CC334G CuAl11Fe6Ni6-C DIN 1714 2.0980 G-CuAl11Ni USA ~ C95500	GS GZ	320 380	680 750	5 5	170 185	running wheels, pump housing and blades, ship propellers, ship superstructures, on-board tableware, turbine wheels, superheated steam fittings, engine components, stirrers, pickling hooks, mixing arms for the chemical industry, heat exchangers, worm wheels, toggle bearings, sliding and pressure parts, wear parts
MEBC	WL 2.0968 G-CuAl9Ni7 ZOLLERN centrifugal casting	GS GZ	230	510 550	8 10	130 140	EBG 9 - very good weldability EBG - most often implemented, very good combination of strength and toughness MEBG, AMB3 for special requirements in shipbuilding low permeability < 1.02 or < 1.05
AMB3	DIN 1714 2.0962 G-CuAl8Mn	GS GZ	180 200	440 500	18 18	105 105	VBG - highest wear resistance and stress capability

mechanical properties pursuant to EN 1982 or WL 2.0968 and DIN 1724 - 2.0962

GS = sand casting (values also for shell-mould casting) GZ = centrifugal casting

- Young's modulus ~ 90 125 kN/mm²
- Electric conductivity ~ 2-9 MS/m
- Density ~7.5-7.6 kg/dm³
- Thermal conductivity ~ 0.34-1.13 W/cm.K
- Thermal expansion coefficient $\sim 14-18 \cdot 10^{-6}/K$
- Permeability < 1.01 to < 1.9 μ_r

Copper-aluminium casting alloys (non-standardised)

Zollern designation		Notes			Minimum values from the tensile specimen			Intended use/ particular application examples
				R _{p0.2} N/mm²	Rm N/mm²	A ₅	HB 10/1000	
	TZB 28 TZB 32 TZB 36	Al content > 13% Tensile specimen frequently not possible only hardness is guaranteed very brittle	GS	450- 600	500- 650	0.5- 1.5	260-300 300-340 340-380	Deep drawing tools for reshaping of titanium, Hastelloy and austenitic steel, low friction coefficient, no welding profile and straigh- tening rolls, bending tools
	SMBG	Sliding material, similar to forged material 2.0960	GS GZ	140 180	440 540	11 12	105 110	For parts subject to sliding stress, oil lubrication required, worm wheels, sliding blocks, spindle nuts, guide rails, also suitable for refrigeration technology
	AMBG	Sliding material, similar to forged material 2.0936 (CW306G)	GS GZ	220 250	490 590	 8 12	130 130	3, 3, 1, 31

mechanical properties pursuant to EN 1982 or WL 2.0968 and DIN 1724 - 2.0962

GS = sand casting (values also for shell-mould casting) GZ = centrifugal casting

- Young's modulus ~ 105 115 kN/mm²
- Electric conductivity ~ 3-6 MS/m (SMBG, AMBG)
- Density ~ 7.6 kg/dm³ TZB ~ 7.2 kg/dm³
- Thermal conductivity ~ 0.45 W/cm.K (SMBG, AMBG)
- Thermal expansion coefficient ~ 15-18. 10-6/K (SMBG, AMBG)

For sand and shell-mould casting, the mechanical properties are determined from separately or integrally cast specimen rods, with centrifugal casting (only copper alloys), directly from the casting, in doing so, the specified values apply only for wall thicknesses up to 50 mm.

The information contained in this document are solely for general information purposes and all data is stated without warranty. It is non-binding and especially does not constitute a binding contract offer on our part. Our general terms and conditions apply for all our deliveries and services.

ZOLLERN-Group Product areas

Metals and shaping

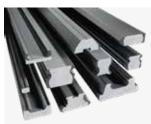
// Investment casting parts

• Turbine components

Structural Castings

- Vanes / Blades/ Shrouds / **Heat Shields**
- Gas Turbines / Aero / Engines Defense / Medical / Industrial Components
- Automotive
- Turbine Wheels / Waste gates / Vanes / Pins / Planet carriers
- Implants
 - Knees (Femur, Tibia) / Hipps
- Alloys
 - Super alloys / Cobalt Chrome alloys

// Sand casting parts


- Sand casting
- Croningguss / Maskenguss
- Ceramic casting
- Continuous casting
- Centrifugal casting

// Forgings

- Forgings made of pure copper and copper alloys
- Semi-finished products, open die forged, flat bars, round bar
- Drop forged parts
- Rings, seamlessly rolled
- Bushings, seamlessly forged
- Individual pieces, small series, large series

// Special profiles and finished parts

- Special profiles, coils, bars
- Customer-specific finished parts
- Profile types hot-rolled, cold-rolled. cold-drawn, induction-hardened

Drive technology and automation

// Gearboxes

- Travel drives
- Slewing gearboxes
- Winch gearboxes
- Industrial gear units
- · Gearboxes for tunnel boring machines
- Sugar mill gearboxes
- Electric drive systems
- Condition Monitoring and Predictive Maintenance

// Winches

- Hoisting winches
- Free fall winches
- Pull winches
- Rescue boat winches
- Winch systems
- Winch gearboxes

// Electric motors

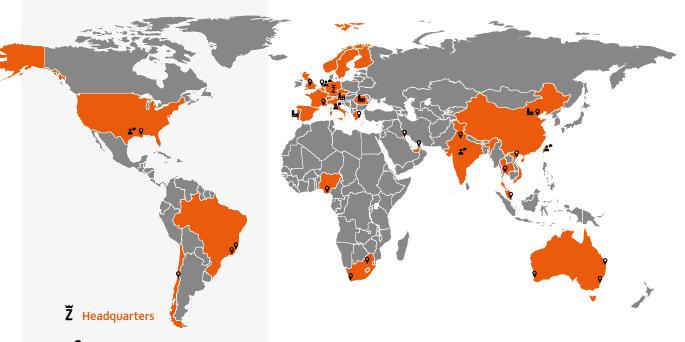
- Torque motors kits
- Synchronous motor kits
- Synchronous motor modules

// Automation, special systems

- · Linear units, linear modules, gantry axes, portal units
- Telescoping axes
- Rotary modules, rotary tables
- Line gantries, area gantries
- Robot traverse axes, jig axes
- Storey lifter and lifting columns
- Fast conveyor
- Framing tenter handling / overhead systems
- Storage systems
- Complete systems with steel construction and control
- Special solutions
- Gripper

// Hydrostatic bearing systems

- bearings
- segments for rotary tables
- Testing and special applications
- Hydraulic units


Rotary table systems, service

- Hydrostatic rotary tables
- Aerostatic rotary tables
- Roller bearing mounted rotary tables
- Rotary tables of Rückle, Eimeldingen

ZOLLERN

Subsidiaries

Italy and southern Europe Netherlands and Northern Europe USA India and Southeast Asia Taiwan

44 Factories

Germany Portugal Romania Slovenia China

Service partner

Australia Brazil Chile Greece Great Britain Kuwait Singapore South Africa Thailand Dubai USA Vietnam

OLLERN-worldwide-

ZOLLERN GmbH & Co. KG

Hitzkofer Strasse 1 72517 Sigmaringendorf-Laucherthal Germany P +49 7571 70-0 F +49 7571 70-602 zgm@zollern.com www.zollern.com

