

Copper-aluminium casting alloy EBG alloy EBG

EBG has high corrosion resistance to water containing CI, hot and cold seawater, neutral and acidic aqueous media, as well as to non-oxidising acids and sulphide/bleaching lye. The material has relatively high strength values, high resistance to erosion and cavitation, good abrasion resistance and good fatigue behaviour. Good pressure tightness and excellent weldability mean it is predominantly used for castings exposed to corrosion in shipbuilding, the food and chemical industry as well as in pump and valve construction.

// Stren	EBG	ZOLLERN brand
at ele	CuAl10Fe5Ni5-C	EN designation
Tempera	CC333G	EN material no:
Te strer	EN 1982, BS 1400	

// National designations	
DIN	G-CuAl10Ni
DIN	2.0975
USA	≈ C95500 ≈ C95800
GB	AB 2 ≈ DEF STAN 747
F	U - E12P

// National designations	
DIN	G-CuAl10Ni
DIN	2.0975
USA	≈ C95500 ≈ C95800
GB	AB 2 ≈ DEF STAN 747
F	U - E12P
	≈ (substantial coherence)

// Composition (mass fraction in %) EN 1982, BS1400-AB2*						
Cu	AI	Fe	Ni	Mn		
76.0 - 83.0	8.5 – 10.5 8.8 – 10.0*	4.0 – 5.5	4.0 - 6.0 4.0 - 5.5*	max. 3.0		
Pb	Si	Sn	Zn			
max. 0.03	max. 0.1	max. 0.1	max. 0.50			

Also possible according to Def Stan 747 (Z-1568), C95500 (Z-1820), C95800 (Z-1890). The requirements Ni => 5 %, Ni > Fe and Al <= 8.2 + Ni/2 are fulfilled by the Zollern core material Z-1650 – EBG-Navy.

// Strength properties at room temperature				
	(minimum values)			
[1] EN 1982 2] BS 1400 [3] Def Stan 747	R _m N/mm²	R _{p0.2} N/mm²	A₅ %	НВ
[1] Sand casting	600	250	13	140
[1] Mask mould casting	600	250	13	140
[1] Centrifugal casting	650	280	13	150
[2] Sand casting	640	250	13	-
[3] Sand casting	620	250	15	-

// Strength p at elevated	properties I temperatures	s (refere	nce valı	Jes)	
	•				

Temperature	°C	20	150	200	250	300
Tensile strength	R _m N/mm²	600	485	430	395	350
0.2% limit	$R_{p0.2}N/mm^2$	270	265	260	258	254
Elongation at break	A ₅ %	12	7	5	-	-

	// Physical properties
7.6 kg/dm³	Density at 20°C
0.42 J/g x °C	Specific heat capacity at 20°C
0.51 W/cm °C	Thermal conductivity at 20°C
4.6 MS/m approx. 8 % IACS	Electrical conductivity at 20°C
0.215 Ω mm²/m	Electrical resistance at 20°C
0.0001 °C-1	Temperature coefficient of the electrical resistance at -100 to 200°C
110 – 128 KN/mm²	Young's modulus
< 1.9	Permeability

//	Dynamic strength values at room temperature (reference values)	
	Bending fatigue strength R _{bw} at 10 ⁸ load cycles	185 N/mm²
	Notched impact energy (ISO - V/KV)	20 joules

Copper-aluminium casting alloy EBG alloy EBG

EBG has high corrosion resistance to water containing CI, hot and cold seawater, neutral and acidic aqueous media, as well as to non-oxidising acids and sulphide/bleaching lye. The material has relatively high strength values, high resistance to erosion and cavitation, good abrasion resistance and good fatigue behaviour. Good pressure tightness and excellent weldability mean it is predominantly used for castings exposed to corrosion in shipbuilding, the food and chemical industry as well as in pump and valve construction.

 Areas of application Wings and hubs, Kaplan blades for ship drives, made from EBG Underbodies, covers and other castings 	Relaxation annealing	650 – 700 °C (improves corrosion resistance)
in condenser and heat exchanger constructionValve housings and parts for shipbuilding, also for	Soft soldering	not recommendable
 submarines, hydraulic parts, pump housings, impellers in contact with seawater and other chlorinated liquids Engine parts such as cylinder heads, cooled exhaust pipes, 	Brazing	poor, fluxes containing fluoride and chloride(type F – SH 1) silver solders are advantageous
Pickling hooks	Welding	good, both TIG, MIG and also electrode manual welding are possible. Suitable filler
Machinability Carbide tools are needed for turning and milling and sharp drill bits are needed for drilling and thread cut- ting. This results in		material CuAl8 = CF309G, CuAl9Ni4Fe2Mn2 = CF310G or S-CuAl8Ni2
machinability that is better than that of austenitic steel. Shorter rolling and flowing chips are formed.	Galvanisability	possible, good cleaning and pretreatment necessary

The specifications in this data sheet are for informational purposes only and are subject to change without notice. 03.2112101/www.creaktiv-werbung.com Errors and ornissions excepted.

ZOLLERN GmbH & Co. KG

Hitzkofer Straße 1 72517 Sigmaringendorf-Laucherthal Germany T +49 7571 70-984 F +49 7571 70-82984 zgm@zollern.com www.zollern.com

All information is given to the best of our knowledge. This does not constitute a guarantee of properties. Our liability shall be determined in accordance with the individual contractual provisions or our general terms and conditions.

