

Wrought copper-zinc alloy special brass BZ 2 alloy 2175

BZ 2 is a construction and sliding material with high strength. It is resistant to atmospheric corrosion as well as to slightly aggressive water and gases. BZ 2 is well suited for medium sliding speeds and medium surface pressures. A hard counterpart material is recommended.

	201	LERN bran	IU			BZ 2
	EN designation		n	CuZn37Mn3Al2PbSi		
	EN I	material n	0:			CW713R
					64:2016 E	99 Forgings 3ars drawn files drawn
/ Nationa	l designatio	ns / ISO				
		DIN			(CuZn40Al2
	DIN			2.0550		
	ISO			≈ CuZn39AlFeMn		
		USA	_			≈ C 67400
		GB	_			≈ CZ 114
		F			*	U - Z36N3
				≈ (si	ubstantia	l coherence
// Compos Cu	ition (weight	: by per o	cent in %		vbstantia	l coherence
		Fe	cent in % nax. 1.0	()	Ni	l coherence max. 1.0
Cu 57.0 – 59.0	AI	Fe		6) Mn	Ni 3.0	
Cu 57.0 – 59.0	AI	Fe 3 n Sn		6) Mn 1.5 - Zn	Ni 3.0	max. 1.0
Cu 57.0 – 59.0 Pb 0.2 – 0.8	A I 1.3 − 2. Si 0.3 − 1.	Fe 3 n Sn 3 n	nax. 1.0 nax. 0.4	6) Mn 1.5 - Zn R	Ni 3.0 Ot	max. 1.0 her
Cu 57.0 – 59.0 Pb 0.2 – 0.8	AI 1.3 – 2.	Fe 3 n Sn 3 n	nax. 1.0 nax. 0.4	6) Mn 1.5 – Zn R ature	Ni 3.0 Ot est	max. 1.0 her
Cu 57.0 – 59.0 Pb 0.2 – 0.8	A I 1.3 − 2. Si 0.3 − 1.	Fe 3 n Sn 3 n	nax. 1.0 nax. 0.4	6) Mn 1.5 - Zn R	Ni 3.0 Ot est	max. 1.0 her
Cu 57.0 – 59.0 Pb 0.2 – 0.8 // Strengtl [2] EN 12	A I 1.3 − 2. Si 0.3 − 1.	Fe 3 n Sn 3 n at room 0:1999 200 kg	nax. 1.0 nax. 0.4	6) Mn 1.5 – Zn R ature	Ni 3.0 Ot est	max. 1.0 her

[1] Forgings and die-forged parts up to 80 mm thickness	230	510	12(*)	140
[1] Forgings over 80 mm thickness	180	470	16(*)	125
[2] Rods, drawn to 30 mm Ø thickness or SW	370	590	10	150- 220
[3] Profiles, drawn to 10 mm thickness	370	590	10	150- 220
[3] Profiles, drawn to 20 mm thickness	280	540	15	130- 170

 $^{\rm (*)}$ for long forgings, tensile test in longitudinal direction, for rings or discs however only $A_{\rm 5}$ min 10%, Not suitable for rings / bushings wall thickness > 100 mm

// Physical properties	
Density at 20 °C	8.1 kg/dm ³
Melting temperature/range	875 – 910°C
Coefficient of linear expansion from 20° to 100°C	19 x 10 ⁻⁶ °C ⁻¹
Specific heat at 20°C	0.356 J/g x °C
Thermal conductivity at 20°C	0.63 W/cm x°C
Electr. conductivity at 20°C	7 - 9 MS/m 12 - 16 % IACS
Electr. resistance at 20°C	0.11 - 0.14 Ω mm²/m
Temperature coefficient of the electrical resistance (0 - 100°C)	0.0009 °C ⁻¹
Permeability	< 1.03
Young's modulus	87 KN/mm²
Shear modulus G	35 KN/mm²

//	Dynamic strength values at room temperature (reference values)	
	Rotational bending fatigue strength $R_{\rm bw}$ at 20 x 10 $^{\rm 6}$ load cycles	170 N/mm²
	Notched impact energy (ISO - V/KV)	20 joules

Wrought copper-zinc alloy special brass BZ 2 alloy 2175

BZ 2 is a construction and sliding material with high strength. It is resistant to atmospheric corrosion as well as to slightly aggressive water and gases. BZ 2 is well suited for medium sliding speeds and medium surface pressures. A hard counterpart material is recommended.

Areas of application Due to the improved sliding properties resulting from the addition of Si and Pb, BZ 2 is particularly suitable for sliding stresses. For example • for slide and guide rails	Relaxation annealing Soft annealing Soft soldering	350 – 450°C 500 - 650°C less suitable
 for bearing bushes in plain bearings 	Brazing	less suitable
 Valve guides Valve guides worm wheels Spindle nuts Thrust pads 	Welding	Inert gas-shielded arc welding is possible. However, smoke is generated due to the evaporation of Zn (smoke extraction).
 which is why a large number of transmission parts such as synchroniser rings, shift forks and piston rings for air compressors are also made of it. Machinability BZ 2 has good hot and limited cold forming properties. Machining is easily possible. The cutting index is 40 where CuZn39Pb3 = 100. The low Pb addition results in shorter spiral chips. 	Surface treatment	BZ 2 can be polished well, both mechanically and as well as chemically or electrochemically. Galvanic coatings are possible, care must be taken to ensure good pre-treatment

Hitzkofer Strasse 1 72517 Sigmaringendorf-Laucherthal Germany T +49 7571 70-984 F +49 7571 70-82984 zgm@zollern.com www.zollern.com

All information is given to the best of our knowledge. This does not constitute a guarantee of properties. Our liability shall be determined in accordance with the individual contractual provisions or our general terms and conditions.