

Wrought copper-aluminium alloy MEBz alloy 1700

MEBz is a copper-aluminium alloy with increased nickel addition and reduced iron content. This results in an <u>amagnetic</u> material with high strength that is corrosion resistant to seawater as well as neutral and acidic media. MEBz complies with the material performance sheet WL 2.0967 and has been approved by the Shipbuilding and Ocean Engineering Standards Body for the shipbuilding sector in accordance with VG 81245. The composition of 2.0967 and the casting material 2.0968 are similar.

Strength properties

ZOLLERN brand	MEBz
EN designation	None
EN material no:	None

// National designations / ISO	
WL	CuAl9Ni7
WL	2.0967

// Composition (weight by percent in %, reference values)									
Си		Al		Fe		Ni		Mn	
	Rest	9	.0 – 9.5		0.9 – 1.3	E	5.7 – 7.3	(0.8 – 1.2
Zn		Si					,		
n	nax. 0.3	n	nax. 0.1						

// Strength properties at room temperature						
	(minimum values)					
WL 2.0967:2017	R _{p0.2} N/mm²	R _m N/mm²	A ₅ %	НВ		
Forged pieces up to 80 mm thickness	300	620	15	150		
Forged pieces over 80 mm thickness	260	570	15	140		
Rods, drawn to 25 mm Ø thickness or SW	320	650	12	150		

at elevated temperatures (reference values)									
Temperature	°C	20	100	200	300	400			
0.2% limit	R _{p0.2} N/mm ²	300	300	280	250	190			
Tensile strength	R _m N/mm²	650	630	610	550	320			
// Physical properties									
	Densi	7.6 kg/dm³							
I	Melting tempera		1060 – 1080 °C						
Coefficient of linear expansion									
	from 20	16 x 10 ⁻⁶ °C ⁻¹							
	Specific he	0.44 J/g x °C							
Th	ermal conductiv	0.638 W/cm x°C							
	Electr. conductiv	4 - 6 MS/m 7 - 10% IACS							
Electr. resistance at 20°C 0.17 - 0.25 Ω mr						mm²/m			
	Pe	Permeability < 1							
	Young	120 KN/mm²							
// Dynamic s at room ter	trength value nperature (ref	erence va	lues)						
Rotational be	ending fatigue st at 20 x 10º l	210 N/mm²							

20 joules

Notched impact energy (ISO - V/KV)

Wrought copper-aluminium alloy MEBz alloy 1700

MEBz is a copper-aluminium alloy with increased nickel addition and reduced iron content. This results in an <u>amagnetic</u> material with high strength that is corrosion resistant to seawater as well as neutral and acidic media. MEBz complies with the material performance sheet WL 2.0967 and has been approved by the Shipbuilding and Ocean Engineering Standards Body for the shipbuilding sector in accordance with VG 81245. The composition of 2.0967 and the casting material 2.0968 are similar.

Areas of application

Due to its low permeability, **MEBz** is suitable for amagnetic components that must be corrosion-resistant and of high strength at the same time.

Besides the use in

- measuring and control devices with magnetic sensors, the material is often used in shipbuilding.
- Fittings and valve bodies, including high-pressure valves, are made of forged material.
- Screws, bolts, shafts and nuts for pumps are also manufactured
- such as housings, bushings or pistons
 z. e.g. for valve control systems.
- Filter housings, distributors and heat exchangers can also be produced as construction welding from several parts.
- Composite welding with castings of the same type are possible without any problems.

There is no risk of stress corrosion cracking and there is very good cavitation and erosion resistance. The material has good scaling resistance and does not become brittle in the cold.

Machinability

Carbide tools are needed for turning and milling and sharp tools are needed for drilling and thread cutting. This results in a machinability that is better than that of austenitic stainless steel. Shorter rolling and flowing chips are formed. Cutting and die-sinking is easily possible.

Relaxation annealing 650 – 680°C

Soft annealing 800 - 850°C

with subsequent furnace cooling down to 650°C, then air cooling

Soft soldering not recommendable

Brazing poor, fluxes containing

fluoride and chloride of type F - SH1 and silver solders are advantageous

Welding good, TIG welding is

preferred, but MIG welding is also possible, filler metal e.g. CuAl10Fe1 = CF305G, S-CuAl8Ni2, S-CuAl8Ni6 or bars of the

same analysis.

Surface treatment good for polishing.

For galvanic coatings, a copper backup bar is advisable

ZOLLERN GmbH & Co. KG

Hitzkofer Strasse 1
72517 SigmaringendorfLaucherthal
Germany
T +49 7571 70-984
F +49 7571 70-82984
zgm@zollern.com
www.zollern.com

