

Wrought copper-nickel-aluminium alloy NB 1

NB 1 according to WL 2.1504 Aerospace is an amagnetic construction material with very high strength. The material is resistant to corrosion and sea water. The fouling by marine organisms is very low. NB 1 has a high resistance to cavitation and erosion, is abrasion-resistant and very suitable as a bearing material in conjunction with stainless steel shafts.

ZOLLERN brand	NB 1
EN designation	None
EN material no:	None

// National designations	
WL	CuNi14Al3
WL	2.1504
F	≈ U-N14A2 ≈ NF L 14-702

≈ (substantial coherence)

// Composition (weight by per cent in %)				
Cu	Ni	Fe	Al	Mn
Rest	13.0 – 16.0	max. 1.5	2.0 - 3.0	max. 1.0
Zn	Si	Other		
max. 0.3	max. 0.1	max. 0.5		

// Strength properties at room temperature					
	(minimum values)				
WL 2.1504	R _{p0.2} N/mm²	R _m N/mm²	A ₅ %	НВ	
Forgings and bars 15 mm to 50 mm thickness according to WL 2.1504	640	780	10	230	
Forgings and bars from 50 to 80 mm thickness according to WL 2.1504	590	780	10	225	
Forgings, and bars over 80 mm thickness, Rings > 50 mm thickness ¹⁾	540	740	10	210	
Rings up to 50 mm thickness 1)	570	760	10	220	

¹⁾ Dimensions not included in WL 2.1504, Zollern values

//	Strength properties	
	at elevated temperatures (reference values)	

Temperature	°C	20	200	300	400	500
0.2% limit	R _{p0.2} N/mm ²	650	590	550	500	380
Tensile strength	R _m N/mm ²	830	820	790	620	390
Elongation	A ₅ %	14	11	8	2	1

	// Physical properties
8.5 kg/dm³	Density at 20 °C
approx. 1120 - 1150℃	Melting temperature/range
	Coefficient of linear expansion
16 x 10 ⁻⁶ °C ⁻¹	from 20° to 100°C
0.415 J/g x °C	Specific heat at 20°C
0.71 W/cm x°C	Thermal conductivity at 20°C
4 - 6 MS/m 7 - 10% IACS	Electr. conductivity at 20°C
$0.167 - 0.25 \ \Omega \ mm^2/m$	Electr. resistance at 20°C
< 1.01	Permeability
143 KN/mm²	Young's modulus

Dynamic strength values at room temperature (reference values)

190 N/mm²	Rotational bending fatigue strength R _{bw} at 20 x 10 ⁶ load cycles
30 joules	Notched impact energy (ISO - V/KV)

Wrought copper-nickel-aluminium alloy NB 1 alloy 2300

NB 1 according to WL 2.1504 Aerospace is an amagnetic construction material with very high strength. The material is resistant to corrosion and sea water. The fouling by marine organisms is very low. NB 1 has a high resistance to cavitation and erosion, is abrasion-resistant and very suitable as a bearing material in conjunction with stainless steel shafts.

Areas of application

NB 1 is suitable for highly stressed parts due to its high strength values even with simultaneous corrosion stress.

For example

- Valve parts such as spindles, seat rings and hydraulic parts are manufactured
- High-strength, amagnetic screws, bolts and nuts for seawater use
- Gears, bevel gears
- Slot lock wedges for generator rotors
- Cap rings for electric motors
- Inserts and cores in plastic injection moulds
- Bearings in aircraft landing gears

Machinability

NB 1 is easy to machine.

The machining index is approx. 20 due to the high strength, whereby CuZn39Pb3 = 100. Cutting and die-sinking is possible. NB 1 is not suitable for cold forming. Carbide tools are used for turning and milling, and sharp drill bits for drilling and thread cutting are advantageous.

Relaxation annealing 300 – 450°C

Soft annealing

Soft soldering suitable

Brazing suitable, but fluoride and

chloride containing fluxes are recommended

Welding not recommended,

similar additive materials of the same type are not available. Welding with nonmatching filler metals such as CuAl9Ni4Fe2Mn2 = CF310G or S-CuNi30Fe =

2.0837 is possible.

Surface treatment polishing and galvanic

treatments are possible

ZOLLERN GmbH & Co. KG

Hitzkofer Strasse 1
72517 SigmaringendorfLaucherthal
Germany
T +49 7571 70-984
F +49 7571 70-82984
zgm@zollern.com
www.zollern.com

