

Wrought copper-nickel-silicon alloy NSB alloy 1110 (Manganese-free = alloy 1115)

NSB = 2.0855 is a precipitation-hardenable, low-alloy material with high strength, medium electrical and thermal conductivity. The material NSB is insensitive to stress corrosion cracking and to atmospheric corrosion. It does not become brittle at low temperatures. Yield strength, strength and also elongation increase with falling temperatures. Therefore NSB is also suitable for use in low-temperature technology. NSB can be easily thermoformed and cold-formed.

// Stre	NSB	ZOLLERN brand
valu	CuNi2Si	EN designation
Temper	CW111C (1115-0)	EN material no:

EN 12420:1999 Forgings EN 12163:2016 Bars drawn EN 12167:2016 Profiles drawn Mn content, see composition

// National designations / ISO	
DIN	CuNi2Si
DIN	2.0855 (1110-0)
ISO	≈ CuNi2Si
USA	C64700 (1115-0)
GB	-
F	≈ U - N3S

≈ (substantial coherence)

// Composition according to DIN 1.7666 2.0855 (weight by per cent in %)						
Cu Ni		Si	Mn	Other		
	Rest	1.6 – 2.5	0.5 – 0.8	max. 0.8	max. 0.3	

NSB = 2.0855 alloyed with Mn to improve forgeability.

Also available without manganese additive = CW111C or C64700 (1115-0)

// Strength properties at room temperature					
(minimum values)					
[1] EN 12420:1999 [2] EN 12163:2016 min. 200 Kg [3] EN 12167:2016 min. 200 Kg [3] ASTM B411 C64700 min. 200 Kg	R _{p0.2} N/mm²	R _m N/mm²	A₅ %	НВ	
[1] Forgings and die-forged parts up to 80 mm thick- ness	340 430 ¹⁾	490 550 ¹⁾	12	150	
[1] Forgings over 80 mm thickness	320 430 ¹⁾	470 550 ¹⁾	12	140	
[2] Rods, drawn up to 30 mm Ø [3] Profiles, drawn up to 10 mm thickness	590	640	10 ^[2] 8 ^[3]	180	
[3] Profiles, drawn up to 30 mm thickness	520	600	10	165	
[4] Profiles, drawn up to 38 mm thickness	515	620	8	-	

¹⁾ Higher strength on request

ength properties at elevated temperatures (reference ues) (drawn bar, 22 mm Ø)

Temperature	°C	20	200	300	400	500
0.2% limit	$R_{p0.2}$ N/mm ²	560	525	490	450	300
Tensile strength	R _m N/mm²	590	575	550	480	330
Elongation	A ₅ %	13	8	2	2	2

// Physical properties				
Density at 20 °C	8.8 kg/dm³			
Melting temperature/range	1040 – 1060°C			
Coefficient of linear expansion				
from 20° to 200°C	16 x 10 ⁻⁶ °C ⁻¹			
from 20° to 300°C	18 x 10⁻⁵ °C⁻¹			
Specific heat at 20°C	0.381 J/g x °C			
Thermal conductivity at 20°C	1.51 W/cm x°C			
Electr. conductivity at 20°C	11 - 16 MS/m 18 - 27 % IACS			
(without manganese	min. 18 MS/m, min. 31 % IACS)			
Electr. resistance at 20°C	0.0625 - 0.0909 Ω mm²/m			
Temperature coefficient of the electrical resistance (0 - 100°C)	0,0020 °C1			
Permeability	< 1.01			
Young's modulus	130 KN/mm²			
I Dynamic strength values at room temperature (reference values)				

Rotational bending fatigue strength R _{bw} at 20 x 10º load cycles, 30 % cold formed	180 N/mm²
Notched impact energy (ISO - V/KV)	80 joules

Wrought copper-nickel-silicon alloy NSB alloy 1110 (Manganese-free = alloy 1115)

NSB = 2.0855 is a precipitation-hardenable, low-alloy material with high strength, medium electrical and thermal conductivity. The material NSB is insensitive to stress corrosion cracking and to atmospheric corrosion. It does not become brittle at low temperatures. Yield strength, strength and also elongation increase with falling temperatures. Therefore NSB is also suitable for use in low-temperature technology. NSB can be easily thermoformed and cold-formed.

Areas of application Due to the favourable combination of	Relaxation annealing	250 – 400°C	
properties, NSB is suitable	Soft annealing	soft, solution annealed	
 for many areas of technology, 		condition is achieved by	
also with seawater contact.		annealing 750 - 880°C	
 In addition to amagnetic screws, bolts, 		with subsequent	
contact wire clamps in overhead line construction, NSB is used, among other things, as a rotor burs		water quenching	
and rotor wedge gibs in electric motors and generators.	Soft soldering	good	
<u>, </u>	Brazing	not recommended	
A fine-grained microstructure with finely distributed	-	due to softening	
nickel silicides results in excellent running behaviour			
with the carbon brushes in slip rings for electric motors	Welding	not recommended due	
and current transformers. Mechanically and electrical-		to softening,	
ly stressed parts in resistance welding machines e.g.		preheating is necessary	
lower copper, electrode holders are possible in NSB.		for large parts.	
		A filler material of the	
Machinability		same type is not	
NSB has good hot forming properties and can also be cold-formed well in the solution-annealed condition.		available	
NSB behaves better during machining than pure	Surface treatment	polishing and chemical	
copper. Flow chips do not form as long.	Sonace treatment	structuring are	
The cutting index is approx. 30 where		possible, as well as	
CuZn39Pb3 = 100.		galvanic coatings	
		g	

ZOLLERN GmbH & Co. KG

Hitzkofer Strasse 1 72517 Sigmaringendorf-Laucherthal Germany T +49 7571 70-984 F +49 7571 70-82984 zgm@zollern.com www.zollern.com

All information is given to the best of our knowledge. This does not constitute a guarantee of properties. Our liability shall be determined in accordance with the individual contractual provisions or our general terms and conditions.

