

Pure copper **SE-Cu** (Cu-HCP) alloy 0100

SE-Cu is a deoxidised copper with low residual phosphorus content. It is melted from cathodes, is oxygen-free and therefore has high electrical conductivity and good weldability and solderability. The main applications are in electronics and electrical engineering, as well as in applications where a high degree of heat transfer capability is required.

ZOLLERN brand	SE-Cu
EN designation	Cu-HCP (Cu-PHC)
EN material no:	CW021A (CW020A)

EN 12420:1999 (~CW008A Forging) EN 13601:2013 round, square EN 13605:2013 other profiles

// National designations / ISO	
DIN	SE-Cu
DIN	2.0070
ISO	Cu-HCP
USA	C10300
GB	C106
F	Cu-c1

// Composition (weight by per cent in % per eler	nent)
--	-------

Cu 1)	Ві	P 2)	Pb	Other
min. 99.95	max. 0.0005	0.002-0.007	max.0.005	max.0.03 excl. Ag, P

 $^{\mbox{\tiny 1)}}$ including silver up to max. 0.015%. $^{\mbox{\tiny 2)}}$ Cu-PHC 0.001-0.006 %P

// Strength properties at room temperature				
	(minimum values)			5)
[1] EN 12420:1999 !!! (like CW008A) [2] EN 13601:2013 cold drawn [2] Values also for forged parts [3] EN 13605:2013 min. 200 kg	R _{p0.2} N/mm²	R _m N/mm²	A ₅ %	НВ
[1] Forgings and Die-forged parts (F20)	40	200	35	45
[2] Soft (F20) Medium hard (F22) Hard (F25) (< 120 mm) Pull hard (F30) (< 10 mm)	<120 160 220 260	200 220 ³⁾ 250 ³⁾ 300	35 18 12 8	35 - 65 65 - 90 ⁴⁾ 75 - 100 ⁴⁾ 85 - 110 ⁴⁾
[3] drawn profiles < 10 mm F24 drawn profiles < 5 mm F28	160 240	240 280	15 8	65 – 95 80 - 115

³⁾ Deviating from standard EN 13601 10 N/mm² lower ⁴⁾ Hardness values may deviate slightly +- 10 HB

// Physical properties	
Density at 20 °C	8.90 kg/dm³
Melting temperature/range	1083°C
Coefficient of linear expansion	
from -191 ° to 16°C	14.1 x 10 ⁻⁶ °C ⁻¹
from 20° to 100°C	16.8 x 10 ⁻⁶ °C ⁻¹
from 20° to 200°C	17.3 x 10 ⁻⁶ °C ⁻¹
from 20° to 300°C	17.7 x 10 ⁻⁶ °C ⁻¹
Specific heat capacity at 20°C	0.386 J/g x ℃
Thermal conductivity at 20°C	3.94 W/cm x°C
at 100°C	3.85 W/cm x°C
at 200°C	3.81 W/cm x°C
at 300°C	3.77 W/cm x°C
Electr. conductivity at 20°C (with higher strength from F22)	> 57.0 MS/m > 98 % IACS > 56.0 MS/m > 96 % IACS
Electr. resistance at 20°C	(F20) < 0.01754 Ω mm²/m
Temperature coefficient of the electrical resistance at 20°C (valid from -100 to 200°C)	0.00393 °C ⁻¹
Permeability µ	< 1.01
Young's modulus at 20°C	cold formed 130 KN/mm² annealed 110 KN/mm²

Dynamic strength values

at room temperature (reference values)

at 20 x 106 load cycles

70 N/mm²

130 joules

Rotational bending fatigue strength $R_{\mbox{\tiny bw}}$

Notched impact energy (ISO - V/KV)

Solid metals. Fine solutions.

Pure copper **SE-Cu** (Cu-HCP) alloy 0100

SE-Cu is a deoxidised copper with low residual phosphorus content. It is melted from cathodes, is oxygen-free and therefore has high electrical conductivity and good weldability and solderability. The main applications are in electronics and electrical engineering, as well as in applications where a high degree of heat transfer capability is required.

Application examples Due to its high electrical and thermal conductivity, SE-Cu is preferably used in electrical engineering, welding and thermal	Relaxation annealing Soft annealing	150 – 250°C 250 - 500°C
engineering. • Short-circuit rings for motors are rough-turned or finish-turned.	Temperature range for hot forming	750 – 950°C
 Power supply rails and exciter bars for generators. Components such as feeders and copper back-up bars in resistance welding machines. Heat sinks such as standing moulds, cooling plates 	Machinability	moderate to difficult to machine, (long flow chips are formed)
e.g. in the steel industry, combustion chambers for rocket nozzles.	Soft soldering	very good
Machinability SE-Cu has very good hot and cold formability.	Brazing	good (preferably inert gas brazing)
All common types of semi-finished products such as bars, bushings, rings or open-die and drop forgings	Welding	Due to the high thermal conductivity preheating

can be produced. The machinability in the soft state is classified as moderate to poor, as long flow chips form due to the high toughness of the material.

Cold forming achieves a hardness of up to over 100 HB for thin rods or tubes, and 65-90 HB for forgings, depending on the cross-section and shape of the part. From a wall thickness of approximately 120 mm, the core areas are softer after strain hardening.

up to approx. 600°C is necessary for larger pieces, no danger of hydrogen brittleness

Galvanisability good

ZOLLERN GmbH & Co. KG

Hitzkofer Strasse 1 72517 Sigmaringendorf-

Laucherthal Germany T +49 7571 70-984 F +49 7571 70-82984 zgm@zollern.com www.zollern.com

