

Wrought copper-aluminium alloy SMBm alloy 1460 / SMBh alloy 1450

Like **SMBh, SMBm** is also a wear-resistant sliding material and is also suitable as a construction material. It is resistant to acidic and neutral aqueous media, as well as to seawater. SMBm has good cold forming properties and is also suitable for the production of drawn bars and profiles.

	ZOLLE	RN brand		SMB	im / SMBh	
	EN de	signation		EN stand	dard, none	
	EN ma	iterial no:		EN stand	dard, none	
// National	designations	/ ISO				
	DIN 17655			CuAl9Mn2		
	DIN	17655			2.0960	
<pre>// Composition (weight by per cent in %)</pre>						
-composit	ion (meighte b	51				
Cu		Fe	Mn	Ni		
Cu Rest	AI 8.0 – 10.0	Fe max 1.5	Mn	Ni 5 -3.0	max 0.8	
Cu Rest Pb	AI 8.0 – 10.0 Zn	Fe max 1.5	Mn	Ni 5 -3.0	max 0.8	
Cu Rest Pb max. 0.05	AI 8.0 - 10.0 Zn max. 0.5	Fe max 1.5 Other max. 0.3	Mn 5 1.	Ni 5 - 3.0	max 0.8	
Cu Rest Pb max. 0.05	Al 8.0 – 10.0 Zn max. 0.5	Fe max 1.5 Other max. 0.3	Mn 5 1.	Ni 5 -3.0	max 0.8	
Cu Rest Pb max. 0.05	Al 8.0 – 10.0 Zn max. 0.5	Fe max 1.5 Other max. 0.3	Mn 5 1.	Ni 5 -3.0	max 0.8	
Cu Rest Pb max. 0.05	Al 8.0 – 10.0 Zn max. 0.5	Fe max 1.5 Other max. 0.3	Mn 1.	Ni 5 -3.0 um values)	max 0.8	

[2] DIN 17672:1983 min. 250 kg	N/mm²	N/mm²	%	
[1] Forging SMBm	205	510	22	120
up to 80 mm thickness SMBh	210	570	15	130
[1] Forging SMBm	195	490	25	110
over 80 mm SMBh	205	570	15	125
[2] SMBh Rods, drawn up to 30 mm Ø,thickness or SW	250	590	15	

SMBh has a slightly higher strength than SMBm

// Strength properties at elevated temperatures (reference values)						
Temperature	°C	20	200	300	400	500
0.2% limit	R _{p0.2} N/mm ²	240	230	225	225	100
Tensile strength	R _m N/mm ²	580	530	450	280	130
Elongation	A ₅ %	45	45	27	40	30
// Physical properties Density at 20 °C 7.6 kg/dm ³						

1045 – 1100 °C	Melting temperature/range
	Coefficient of linear expansion
16 x 10⁻⁵ °C⁻¹	from 20° to 100°C
17 x 10 ⁻⁶ °C ⁻¹	from 20° to 300°C
0.44 J/g x °C	Specific heat at 20°C
0.88 W/cm x°C	Thermal conductivity at 20°C
4 - 6 MS/m 7 - 10% IACS	Electr. conductivity at 20°C
0.16 - 0.25 Ω mm²/m	Electr. resistance at 20°C
< 1.05	Permeability
107 KN/mm ²	Young's modulus

//	Dynamic strength values at room temperature (reference values)	
	Rotational bending fatigue strength R_{bw} at 20 x 10 ⁶ load cycles	180 N/mm²
	Notched impact energy (ISO - V/KV)	70 joules

Wrought copper-aluminium alloy SMBm alloy 1460 / SMBh alloy 1450

Like SMBh, SMBm is also a wear-resistant sliding material and is also suitable as a construction material. It is resistant to acidic and neutral aqueous media, as well as to seawater. SMBm has good cold forming properties and is also suitable for the production of drawn bars and profiles.

Areas of application	Relaxation annealing	350 – 480°C	
SMBm is a medium-hard Cu-Al alloy with good sliding		700 7000	
properties at medium sliding speeds. It is also a soft	Soft annealing	/00 - /20 C	
steel (not nardened or tempered) so it can be used as a		with subsequent	
counter part. Due to the lower hardness compared		cooling in air	
of misalianment of the shaft to buch	Coft coldoring	not recommandable	
or misalignment of the shart to bush.	Soft soldering	not recommendable	
SMBm is therefore suitable for	Brazing	poor, fluxes containing	
worm wheels		fluoride and chloride of	
Bevel gears		type F - SH1 and silver	
other drive elements		solders are advantageou	S
in use in mechanical engineering	Welding	good, TIG-welding is	
thrust pads and spindle nuts	-	preferable, but MIG	
bearing bushes		welding is also possible.	
• quide rails		Filler material e.g. CF309	G
Sliding strips		= CuAl8 or S-CuAl8Ni2	
Wedge gibs with adjustable guides			
	Surface treatment	polishing, chemical	
SMBm is used as a sealing strip support on paper		structuring and galvanic	
machines. SMBm has good cold forming properties		treatments are possible.	
and can, for example, be flanged. Mould inserts and		Undercoating is advisable	e
cores for plastic injection moulds are made from SMBh,		for electroplated coating	IS
which is easy to machine and polish. The relatively high			
thermal conductivitu for aluminium bronzes leads to a			
reduction in cycle time compared to pure steel moulds.			
Machinability			
Carbide tools are needed for turning and milling and			
sharp tools are needed for drilling and thread cutting.			
This results in a machinability that is better than that			
of austenitic stainless steel. Shorter rolling and flowing			
chips are formed.			
Cutting and die-sinking is easily possible, as is polishing			
and chemical structuring of the surface.			
			ZULLERN GMDH & CO. K
			HILZKOTER Strasse 1
			72517 Sigmaringendorf- Laucherthal
			Germany
			T +49 7571 70-984
All information is given to the best of our knowledge. This does			F +49 7571 70-82984
not constitute a guarantee of properties. Our liability shall be de- termined in accordance with the individual contractual provisions			zgm@zollern.com
or our general terms and conditions.			www.zollern.com

KG