

Kupfer-Aluminium-Knetlegierung VB Leg. 1580

VB gehört zur Gruppe der hochfesten Aluminium-Mehrstoff-Bronzen. Der Werkstoff besitzt eine hohe Korrosionsbeständigkeit bei gleichzeitig hohen Festigkeitseigenschaften. Durch eine gezielte Wärmbehandlung können bei kurzen Schmiedestücken eine Streckgrenze und Zugfestigkeit von ca. 700 und 1.000 N/mm² erreicht werden.

ERN Marke VB	ZOLLERN Marke
ezeichnung CuAl11Fe6Ni6	EN-Bezeichnung
rkstoff-Nr.: CW308G	EN Werkstoff-Nr.:

EN 12420:1999 Schmiedestücke

// Festigkeitseigenschaften bei erhöhten Temperaturen (Anhaltswerte)						
Temperatur	°C	20	200	300	400	500
0,2 % Grenze	R _{p0,2} N//mm ²	600	510	430	260	80
Zugfestigkeit	R _m N/mm²	850	700	570	280	120
Dehnung	A ₅ %	11	7	6	42	70

// Nationale Bezeichnungen / ISO			
DIN	CuAl11Ni6Fe5		
DIN	2.0978		
ISO	≈ CuAl10Fe5Ni5		
USA	≈ C63000		
GB	≈ CA 104		
F	≈ U – A11N		

≈ (weitgehende Übereinstimmung)

	// Physikalische Eigenschaften
7,6 kg/dm³	Dichte bei 20 °C
1.060 – 1.075 °C	Schmelztemperatur/-bereich
	Längenausdehnungskoeffizient
15 x 10 ⁻⁶ °C ⁻¹	von - 200° bis 20°C
15 x 10 ⁻⁶ °C ⁻¹	von 20° bis 100°C
17 x 10 ⁻⁶ °C ⁻¹	von 20° bis 300 °C
0,435 J/g x °C	Spezifische Wärme bei 20 °C
0,38 W/cm x °C	Wärmeleitfähigkeit bei 20 °C
4 – 6 MS/m 7 – 10 % IACS	Elektr. Leitfähigkeit bei 20°C
0,167 – 0,25 Ω mm²/m	Elektr. Widerstand bei 20 °C
0,0005 °C ⁻¹	Temperaturkoeffizient des elektr. Widerstandes (0 – 100 °C)
< 1,8	Permeabilität
115 KN/mm²	E – Modul

// Zusammensetzung (Massenanteil in %)				
Cu	Al	Fe	Mn	Ni
Rest	10,5 – 12,5	5,0 – 7,0	max. 1,5	5,0 – 7,0
Pb	Si	Sn	Zn	Sonstige
max. 0,05	max. 0,2	max. 0,1	max. 0,4	max. 0,2

// Festigkeitseigenschaften bei Raumtemperatur				
	(Mindestwerte)			
[1] höhere Festigkeitswerte als CW308G nach EN 12420:1999	R _{p0,2} N/mm²	R _m N/mm²	A ₅ %	НВ
[1] Schmiedestücke und Gesenkpressteile	450	800	4	215

// Dynamische Festigkeitswerte bei Raumtemperatur (Anhaltswerte)	
Umlaufbiegewechselfestigkeit R _{bw} bei 20 x 10 ⁶ Lastspielen	310 N/mm²
Kerbschlagarbeit (ISO – V/KV)	10 Joule

Kupfer-Aluminium-Knetlegierung VB Leg. 1580

VB gehört zur Gruppe der hochfesten Aluminium-Mehrstoff-Bronzen. Der Werkstoff besitzt eine hohe Korrosionsbeständigkeit bei gleichzeitig hohen Festigkeitseigenschaften. Durch eine gezielte Wärmbehandlung können bei kurzen Schmiedestücken eine Streckgrenze und Zugfestigkeit von ca. 700 und 1.000 N/mm² erreicht werden.

Anwendungsgebiete

VB ist ein hochfester, hochbelastbarer Werkstoff mit hoher Korrosionsbeständigkeit gegen Cl-haltige Wässer, neutrale und saure wässrige Medien. Er weist eine gute Beständigkeit gegen Verzunderung, Erosion und Kavitation auf. Hochbelastete Lager und Schneckenräder für Gleitgeschwindigkeiten < 1 m/s.

Flächenpressungen bis zu ca. 25 KN/cm² sind unter geeigneten Bedingungen zulässig, so z. B. bei

- Kniehebellagerungen
- Gleitleisten
- Druck- und Gleitlagerringe
- Verschleiß- und Keilleisten im Maschinen- und Formenbau

Bearbeitbarkeit

Es sind Hartmetallwerkzeuge zum Drehen und Fräsen und scharfe Werkzeuge zum Bohren und Gewindeschneiden notwendig. Damit ergibt sich eine Zerspanbarkeit, die besser als die von austenitischem Edelstahl ist. Es bilden sich kürzere Roll- und Fließspäne. Schneid- und Senkerodieren ist gut möglich, ebenso kann die Oberfläche durch Ätzungen dekorativ strukturiert werden.

Entspannungsglühung 650 – 720 °C

Weichglühen 800 – 850 °C

mit anschließender Ofenabkühlung bis 650 °C, danach Luftabkühlung

Weichlöten nicht empfehlenswert

Hartlöten schlecht, es sind fluorid-

und chloridhaltige Flussmittel vom Typ F – SH1 und Silberlote vorteilhaft

Schweiβen gut, sowohl WIG, MIG

als auch Elektrodenhandschweißung ist möglich, Zusatzwerkstoff z. B. CuAl9Ni4Fe2Mn2 = CF310G oder S-CuAl8Ni2

Oberflächenbehandlung polieren, chemisch struk-

turieren und galvanische Behandlungen sind möglich. Bei galvanischen Beschichtungen ist ein Unterkupfern ratsam

ZOLLERN GmbH & Co. KG

72517 Sigmaringendorf-Laucherthal Deutschland T +49 7571 70-984 F +49 7571 70-82984 zgm@zollern.com www.zollern.com

Hitzkofer Straße 1

