

Wrought copper-aluminium alloy VB Alloy 1580

VB belongs to the group of high-strength aluminium multi-components bronzes. The material has a high corrosion resistance with high strength properties at the same time. Through targeted heat treatment, a yield strength and tensile strength of approx. 700 and 1,000 N/mm² can be achieved for short forgings.

VB		ZOLLERN brand
1Fe6Ni6	CuAl11	EN designation
CW308G	C	EN material no:

EN 12420:1999 Forgings

// National designations / ISO	
DIN	CuAl11Ni6Fe5
DIN	2.0978
ISO	≈ CuAl10Fe5Ni5
USA	≈ C63000
GB	≈ CA 104
F	≈ U - A11N

≈ (substantial coherence)

// Composition (weight by per cent in %)				
Cu	AI	Fe	Mn	Ni
Rest	10.5 – 12.5	5.0 – 7.0	max. 1.5	5.0 – 7.0
Pb	Si	Sn	Zn	Other
max. 0.05	max. 0.2	max. 0.1	max. 0.4	max. 0.2

// Strength properties at room temperature				
(minimum values)				
[1] higher strength values than CW308G according to EN 12420:1999	R _{p0.2} N/mm²	R _m N/mm²	A₅ %	НВ
[1] Forgings and die-pressed parts	450	800	4	215

<pre>// Strength properties at elevated temperatures (reference values)</pre>						
Temperature	°C	20	200	300	400	500
0.2% limit	$R_{p0,2}$ N//mm ²	600	510	430	260	80
Tensile strength	R _m N/mm²	850	700	570	280	120
Elongation	A ₅ %	11	7	6	42	70

// Physical properties	
Density at 20 °C	7.6 kg/dm ³
Melting temperature/range	1060 – 1075 °C
Coefficient of linear expansion	
from - 200° to 20°C	15 x 10 ⁻⁶ °C ⁻¹
from 20° to 100°C	15 x 10 ⁻⁶ °C ⁻¹
from 20° to 300°C	17 x 10 ⁻⁶ °C ⁻¹
Specific heat at 20°C	0.435 J/g x °C
Thermal conductivity at 20°C	0.38 W/cm x°C
Electr. conductivity at 20°C	4 - 6 MS/m 7 - 10% IACS
Electr. resistance at 20°C	0.167 - 0.25 Ω mm²/m
Temperature coefficient of the electrical resistance (0 - 100°C)	0.0005°C-1
Permeability	< 1.8
Young's modulus	115 KN/mm ²

// Dynamic strength values at room temperature (reference values)	
Rotational bending fatigue strength $R_{\rm bw}$ at 20 x 10 $^{\rm 6}$ load cycles	310 N/mm²
Notched impact energy (ISO - V/KV)	10 joules

Wrought copper-aluminium alloy **VB** Alloy 1580

VB belongs to the group of high-strength aluminium multi-components bronzes. The material has a high corrosion resistance with high strength properties at the same time. Through targeted heat treatment, a yield strength and tensile strength of approx. 700 and 1,000 N/mm² can be achieved for short forgings.

Areas of application VB is a high-strength material with a high load capacity	Relaxation annealing	650 – 720°C
and high corrosion resistance to Cl-containing water,	Soft annealing	800 - 850°C
neutral and acidic aqueous media.	5	with subsequent furnace
It has good resistance to scaling, erosion and cavitation.		cooling down to 650°C,
Highly loaded bearings and worm wheels for		then air cooling
sliding speeds < 1 m/s.		
	Soft soldering	not recommendable
Surface pressures of up to approx. 25 KN/cm ²	5	
are permissible under suitable conditions, e.g. with	Brazing	poor, fluxes containing
toggle lever bearings		fluoride and chloride of
Sliding strips		type F - SH1 and silver
 Thrust and plain bearing rings 		solders are advantageous
Wear and wedge gibs		solacis are davantageous
in machine and mould construction	Welding	good, both TIG, MIG
	Weiding	as well as manual
Machinability		electrode welding is
Carbide tools are needed for turning and milling and		possible, filler metal
sharp tools are needed for drilling and thread cutting.		e.g. CuAl9Ni4Fe2Mn2 =
This results in a machinability that is better than that		CF310G or S-CuAl8Ni2
of austenitic stainless steel. Shorter rolling and flowing		CF3T0G 0F3-CUAI6INIZ
chips are formed.	Surface treatment	polishing, chemical
Cutting and die-sinking is easily possible, and the sur-	Sonace treatment	structuring and
face can also be structured decoratively by etching.		galvanic treatments
Tace can also be scructured decoratively by etchilig.		are possible.
		Undercoating is
		advisable for
		electroplated
		coatings

ZOLLERN GmbH & Co. KG

Hitzkofer Strasse 1 72517 Sigmaringendorf-Laucherthal Germany T +49 7571 70-984 F +49 7571 70-82984 zgm@zollern.com www.zollern.com

All information is given to the best of our knowledge. This does not constitute a guarantee of properties. Our liability shall be determined in accordance with the individual contractual provisions or our general terms and conditions.

